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Nonlinear	Mixed	0-1 Integer	Formulations

• Modeling	Finite	Alternatives	=	Unions	of	Convex	Sets
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Extended and	Non-Extended	Formulations	for									

Large,	but	strong	(ideal*)

Extended Non-Extended	

Small,	but	weak?

Embedding	Formulations

*Integral	y in	extreme	points	of	LP	relaxation
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Constructing	Non-extended	Ideal	Formulations

Embedding	Formulations

• Pure	Integer	: • Mixed Integer:
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Embedding	Formulation	=	Ideal	non-Extended

Embedding	Formulations
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(Cayley)	Embedding
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Alternative	Encodings

Embedding	Formulations

• 0-1	encodings	guarantee	validity

• Options	for	0-1	encodings:
– Traditional	or	Unary	encoding

– Binary encodings:
– Others	(e.g.	incrementalencoding							unary)
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Unary	Encoding,	Minkowski Sum	and	Cayley Trick

Embedding	Formulations
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For	traditional	or	unary	encoding:
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Encoding	Selection	Matters

Embedding	Formulations

• Size	of	unary	formulation	is:						
(Lee	and	Wilson	’01) f(x,y)

y

x
Variable	
Bounds

General	
Inequalities

• Size	of	one	binary	formulation:		
(V.	and	Nemhauser ’08)

• Right	embedding	=	significant	computational	
advantage	over	alternatives	(Extended,	Big-M,	etc.)
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Complexity	of	Family	of	Polyhedra

Embedding	Formulations

• Embedding	complexity	=	
smallest	ideal formulation

• Relaxation	complexity	=	
smallest	formulation
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• Lower	and	Upper	bounds	for	special	structures:
– e.g.	for	Special	Order	Sets	of	Type	2	(SOS2)	on	n variables

• Embedding	complexity	(ideal)

• Relaxation	complexity	(non-ideal)

• Relation	to	other	complexity	measures

• Still	open	questions	(see	V.	2015)

Complexity	Results

Embedding	Formulations

General	Inequalities
Total

General	Inequalities
Total
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Example	of	Constant	Sized	Non-Ideal	Formulation

Embedding	Formulations

• Polynomial	sized	coefficients:
–

• 80 fractional	extreme	points	for		n	=	5
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Faces	for	Ideal	Formulation	with	Unary	Encoding

Embedding	Formulations

• Two	types	of	facets	(or	faces):
–

–

– Not	all	combinations	of	faces

– Which	ones	are	valid?
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Valid	Combinations	=	Common	Normals
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• Description	of	boundary	of												
is	easy	if	“normals condition”	
yields	convex	hull	of	1 nonlinear	
constraint	and	point(s)

Unary	Embedding	for	Unions	of	Convex	Sets

Embedding	Formulations
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Bad	Example:	Representability Issues

Embedding	Formulations
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can	fail	to	be	basic	semi-algebraic

Description	with	finite	number	of	
(quadratic)	polynomial	inequalities?

Zariski closure	
of	boundary
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Summary

• Embedding	Formulations	=	Systematic	procedure	for	
strong	(ideal)	non-extended	formulations
– Encoding	can	significantly	affect	size

• Complexity	of	Union	of	Polyhedra beyond	convex	hull
– Embedding	Complexity	(non-extended	ideal	formulation)
– Relaxation	Complexity	(any	non-extended	formulation)
– Still	open	questions	on	relations	between	complexity			
(Embedding	Formulations	and	Complexity	for	Unions	of	Polyhedra,	arXiv:1506.01417)

• Embedding	Formulations	for	Convex	Sets
– MINLP	formulations
– Can	have	representability issues	

• Open	question:	minimum	number	of	auxiliary	variables	 for	fixing	this
Embedding	Formulations


