Embedding Formulations, Complexity and Representability for Unions of Convex Sets

Juan Pablo Vielma

Massachusetts Institute of Technology

CMO-BIRS Workshop: Modern Techniques in Discrete Optimization: Mathematics, Algorithms and Applications, Oaxaca, Mexico. November, 2015.

Supported by NSF grant CMMI-1351619

Nonlinear Mixed <u>0-1</u> Integer Formulations

• Modeling Finite Alternatives = Unions of Convex Sets

$$x \in \bigcup_{i=1}^{n} C_i \subseteq \mathbb{R}^d$$

$$\overbrace{C_1}_{C_3}$$

$$\overbrace{C_4}$$

Extended and Non-Extended Formulations for $\bigcup_{i=1}^{n} C_i$

$$C_{i} = \left\{ x \in \mathbb{R}^{d} : A^{i}x \leq b^{i} \right\}$$
Extended
$$A^{i}x^{i} \leq b^{i}y_{i} \quad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \quad \forall i \in [n]$$
Non-Extended
$$A^{i}x - b^{i} \leq M_{i}(1 - y_{i}) \quad \forall i \in [n]$$

$$A^{i}x - b^{i} \leq M_{i}(1 - y_{i}) \quad \forall i \in [n]$$

Large, but strong (ideal^{*})

Small, but weak?

*Integral *y* in extreme points of LP relaxation

Constructing Non-extended Ideal Formulations

Embedding Formulations

Embedding Formulation = Ideal non-Extended

$$Q(H) := \operatorname{conv} \left(\bigcup_{i=1}^{n} P_{i} \times \{h^{i}\} \right)$$
$$(x, y) \in Q \cap \left(\mathbb{R}^{d} \times \mathbb{Z}^{k} \right) \quad \Leftrightarrow \quad y = h^{i} \wedge x \in P_{i}$$
$$\operatorname{ext}(Q) \subseteq \mathbb{R}^{d} \times \mathbb{Z}^{k} \qquad H := \{h^{i}\}_{i=1}^{n} \subseteq \{0, 1\}^{k}, \quad h^{i} \neq h^{j}$$

Alternative Encodings

• 0-1 encodings guarantee validity

- Options for 0-1 encodings:
 - Traditional or **Unary** encoding

$$H = \left\{ y \in \{0, 1\}^n : \sum_{i=1}^n y_i = 1 \right\} \qquad \mathbf{e}_j^i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
$$= \left\{ \mathbf{e}^i \right\}_{i=1}^n$$

- **Binary** encodings: $H \equiv \{0,1\}^{\log_2 n}$
- Others (e.g. **incremental** encoding \equiv unary)

Unary Encoding, Minkowski Sum and Cayley Trick

Encoding Selection Matters

• Size of unary formulation is: (Lee and Wilson '01)

• Size of one binary formulation: (V. and Nemhauser '08)

$$4 \log_2 \sqrt{n/2} + 2 + \left(\sqrt{n/2} + 1\right)^2$$

 Right embedding = significant computational advantage over alternatives (Extended, Big-M, etc.) Complexity of Family of Polyhedra $\mathcal{P} := \{P_i\}_{i=1}^n$

 P_2 Embedding complexity = smallest ideal formulation **y**₁ $\operatorname{mc}(\mathcal{P}) := \operatorname{min}_{H} \left\{ \operatorname{size}\left(Q\left(H\right)\right) \right\}$ P_1 \mathbf{X}_1 Relaxation complexity = P_2 smallest formulation $\operatorname{rc}(\mathcal{P}) := \min_{Q, H} \left\{ \operatorname{size}(Q) \right\}$ **y**₁ size (Q) := # of facets of Q 0 \mathbf{X}_1 **Embedding Formulations**

8/15

Complexity Results

- Lower and Upper bounds for special structures:
 - e.g. for Special Order Sets of Type 2 (SOS2) on $n\, {\rm variables}$
 - Embedding complexity (ideal) 2 ⌈log₂ n⌉ ← General Inequalities n+1≤...≤n+1+2 ⌈log₂ n⌉ ← Total
 Relaxation complexity (non-ideal)

• Relation to other complexity measures

$$\operatorname{hc}(\mathcal{P}) := \operatorname{size}\left(\operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i}\right)\right)$$
$$\operatorname{xc}(\mathcal{P}) := \operatorname{min}_{R}\left\{\operatorname{size}(R) : \operatorname{proj}_{x}(R) = \operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}$$

• Still open questions (see V. 2015)

Example of Constant Sized Non-Ideal Formulation

$$x \in \bigcup_{i=1}^{n} P_i$$

$$P_i \subseteq \Delta^{2n} := \left\{ x \in \mathbb{R}^{2n}_+ : \sum_{i=1}^{2n} x_i = 1 \right\}$$

 $P_i = \left\{ x \in \Delta^{2n} : x_j = 0 \quad \forall j \notin \{2i - 1, 2i\} \right\}$

Faces for Ideal Formulation with Unary Encoding

- Two types of facets (or faces): $-P_1 \times \{0\} \equiv y_i \ge 0$
 - $-\operatorname{conv}\left((F_1 \times 0) \cup (F_2 \times 1)\right)$ F_i proper face of P_i
 - Not all combinations of faces
 - Which ones are valid?

Valid Combinations = Common Normals

Embedding Formulations

 P_1

 \mathbf{X}_1

 P_2

X₁

 \mathbf{X}_2

 X_2

Unary Embedding for Unions of Convex Sets

Description of boundary of Q (H) is easy if "normals condition" yields convex hull of 1 nonlinear constraint and point(s)

Bad Example: Representability Issues

Summary

- Embedding Formulations = Systematic procedure for strong (ideal) non-extended formulations
 - Encoding can significantly affect size
- Complexity of Union of Polyhedra beyond convex hull
 - Embedding Complexity (non-extended ideal formulation)
 - Relaxation Complexity (any non-extended formulation)
 - Still open questions on relations between complexity
 (Embedding Formulations and Complexity for Unions of Polyhedra, arXiv:1506.01417)
- Embedding Formulations for Convex Sets
 - MINLP formulations
 - Can have representability issues
 - Open question: minimum number of auxiliary variables for fixing this