Embedding Formulations, Complexity and Representability for Unions of Convex Sets

Juan Pablo Vielma

Massachusetts Institute of Technology

CMO-BIRS Workshop: Modern Techniques in Discrete Optimization: Mathematics, Algorithms and Applications, Oaxaca, Mexico. November, 2015.

Nonlinear Mixed 0-1 Integer Formulations

- Modeling Finite Alternatives = Unions of Convex Sets

$$
x \in \bigcup_{i=1}^{n} C_{i} \subseteq \mathbb{R}^{d}
$$

Extended and Non-Extended Formulations for $\bigcup_{i=1}^{n} C_{i}$
$C_{i}=\left\{x \in \mathbb{R}^{d}: A^{i} x \leq b^{i}\right\}$
Extended

$$
\begin{array}{rlr}
A^{i} x^{i} & \leq b^{i} y_{i} \quad \forall i \in[n] \\
\sum_{i=1}^{n} x^{i} & =x & \\
\sum_{i=1}^{n} y_{i} & =1 & \\
y & \in\{0,1\}^{n} & \\
x, x^{i} & \in \mathbb{R}^{d} \quad \forall i \in[n]
\end{array}
$$

Large, but strong (ideal*)

Non-Extended

$$
\left\lvert\, \begin{array}{rlrl}
A^{i} x-b^{i} & \leq M_{i}\left(1-y_{i}\right) & & \forall i \in[n] \\
\sum_{i=1}^{n} y_{i} & =1 & & \\
y & \in\{0,1\}^{n} & & \\
x & \in \mathbb{R}^{d} & \forall i \in[n]
\end{array}\right.
$$

Small, but weak?
*Integral y in extreme points of LP relaxation

Constructing Non-extended Ideal Formulations

- Pure Integer :
$Q:=\operatorname{conv}\left(\left\{p^{i}\right\}_{i=1}^{n}\right)$

- Mixed Integer:

Embedding Formulation = Ideal non-Extended

$$
Q(H):=\operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i} \times\left\{h^{i}\right\}\right)
$$

$(x, y) \in Q \cap\left(\mathbb{R}^{d} \times \mathbb{Z}^{k}\right) \quad \Leftrightarrow \quad y=h^{i} \wedge x \in P_{i}$
$\operatorname{ext}(Q) \subseteq \mathbb{R}^{d} \times \mathbb{Z}^{k}$

$$
H:=\left\{h^{i}\right\}_{i=1}^{n} \subseteq\{0,1\}^{k}, \quad h^{i} \neq h^{j}
$$

Alternative Encodings

- 0-1 encodings guarantee validity

- Options for 0-1 encodings:
- Traditional or Unary encoding

$$
\begin{aligned}
H & =\left\{y \in\{0,1\}^{n}: \sum_{i=1}^{n} y_{i}=1\right\} \quad \mathbf{e}_{j}^{i}= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
& =\left\{\mathbf{e}^{i}\right\}_{i=1}^{n}
\end{aligned}
$$

- Binary encodings: $H \equiv\{0,1\}^{\log _{2} n}$
- Others (e.g. incremental encoding 三 unary)

Unary Encoding, Minkowski Sum and Cayley Trick

$$
Q(H) \cap\left(\mathbb{R}^{d} \times\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbf{e}^{i}\right\}\right) \equiv \sum_{i=1}^{n} P_{i}
$$

Encoding Selection Matters

- Size of unary formulation is:
(Lee and Wilson '01)

- Size of one binary formulation:
(V. and Nemhauser '08)

$$
4 \log _{2} \sqrt{n / 2}+2+(\sqrt{n / 2}+1)^{2}
$$

- Right embedding = significant computational advantage over alternatives (Extended, Big-M, etc.)

Complexity of Family of Polyhedra $\mathcal{P}:=\left\{P_{i}\right\}_{i=1}^{n}$

- Embedding complexity= smallest ideal formulation
$\operatorname{mc}(\mathcal{P}):=\min _{H}\{\operatorname{size}(Q(H))\}$

- Relaxation complexity= smallest formulation
$\operatorname{rc}(\mathcal{P}):=\min _{Q, H}\{\operatorname{size}(Q)\}$
$\operatorname{size}(Q):=\#$ of facets of Q

Complexity Results

- Lower and Upper bounds for special structures:
- e.g. for Special Order Sets of Type 2 (SOS2) on n variables
- Embedding complexity (ideal)

$$
\begin{aligned}
& 2\left\lceil\log _{2} n\right\rceil \longleftarrow \text { General Inequalities } \\
& n+1 \leq \ldots \leq n+1+2\left\lceil\log _{2} n\right\rceil \longleftarrow \text { Total }
\end{aligned}
$$

- Relaxation complexity (non-ideal)

$$
\begin{aligned}
& 2 \leq \ldots \leq 4 \longleftarrow \text { General Inequalities } \\
& 2 \leq \ldots \leq 5+2 n \longleftarrow \text { Total }
\end{aligned}
$$

- Relation to other complexity measures

$$
\begin{aligned}
& \operatorname{hc}(\mathcal{P}):=\operatorname{size}\left(\operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i}\right)\right) \\
& \operatorname{xc}(\mathcal{P}):=\min _{R}\left\{\operatorname{size}(R): \operatorname{proj}_{x}(R)=\operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i}\right)\right\}
\end{aligned}
$$

- Still open questions (see V. 2015)

Example of Constant Sized Non-Ideal Formulation

$$
\begin{aligned}
& x \in \bigcup_{i=1}^{n} P_{i} \\
& P_{i} \subseteq \Delta^{2 n}:=\left\{x \in \mathbb{R}_{+}^{2 n}: \sum_{i=1}^{2 n} x_{i}=1\right\} \\
& P_{i}=\left\{x \in \Delta^{2 n}: x_{j}=0 \quad \forall j \notin\{2 i-1,2 i\}\right\}
\end{aligned}
$$

Faces for Ideal Formulation with Unary Encoding

- Two types of facets (or faces):
- $P_{1} \times\{0\} \equiv y_{i} \geq 0$
$-\operatorname{conv}\left(\left(F_{1} \times 0\right) \cup\left(F_{2} \times 1\right)\right)$

$$
F_{i} \text { proper face of } P_{i}
$$

- Not all combinations of faces
- Which ones are valid?

Valid Combinations $=$ Common Normals

Unary Embedding for Unions of Convex Sets

- Description of boundary of $Q(H)$ is easy if "normals condition" yields convex hull of 1 nonlinear constraint and point(s)

Bad Example: Representability Issues

Summary

- Embedding Formulations = Systematic procedure for strong (ideal) non-extended formulations
- Encoding can significantly affect size
- Complexity of Union of Polyhedra beyond convex hull
- Embedding Complexity (non-extended ideal formulation)
- Relaxation Complexity (any non-extended formulation)
- Still open questions on relations between complexity
(Embedding Formulations and Complexity for Unions of Polyhedra, arXiv:1506.01417)
- Embedding Formulations for ConvexSets
- MINLP formulations
- Can have representability issues
- Open question: minimum number of auxiliary variables for fixing this

