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0-1 Mixed Integer Convex (MICP) Formulations

e 0-1 MICP = Unions of Closed Convex Sets, even with
different recession cones (M. Lubin, I. Zadik, V. ‘16).
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* General Integer MICP = much more complicated!
— S = {1} U 2N is not general MILP rep., but is MICP rep.
— Prime numbers is not MICP rep., but is non-convex MIP rep.
— See IPCO talk by Miles and llias in June at Waterloo.
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“Extended” / Non-Extended Formulations for - C
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"Extended” = Variable Copies Non-Extended
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Small? and strong (ideal”)  Small, but weak?
Speed: worse than expected  Speed: better than expected

“Integral y in extreme points of LP relaxation
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Non-Polyhedral = Different Representations

e.g. Ceria and Soares ‘99

C; = {xERd . fi(x) <0}
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Generic Formulation Through Gauge Functions

* For ¢ such that 0 € int (C) let:
ve(z) :=inf{\ >0 : x € \C}
epi (yc) =

e If b* e (C; thenideal formulation:

Yoi—iy (2 —yib') <y Vi € [n]
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Simple Non-Extended Ideal Formulation

e Unions of (nearly) Homothetic Closed Convex Sets:

C; = \C + b + Cu

o (- S0 ) < 3 A
Z;l yi=1,y€{0,1}"
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Sticking Homothetic Formulations Together

Valid, but not ideal!

Combine 4
> homothetic
formulations

Right relaxations yield
ideal formulation
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Sufficient Conditions For Ideal Formulation

os(u) :=sup{u-z : x € S}

Similar to “lifting” of e.g.
Tawarmalani et al. ‘10
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May Need to “Find” Homothetic Constraints

Ci + (Ry x{0})

o ‘_.
&

—1,1] x 0

Ci + (Ry x {0}) : Ci + (R- x {0})

2
(max{zy,01)? < 25 < 1 ,
Similar to Bestuzheva et al.

‘16 who divide sets in two.
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Existing Small Ideal Formulations (Isotone Sets)

e Studied by Hijazi et al. ‘12 and Bonami et al. ’15 (n=1, 2):
—Ci:{a:ERd:lzgazgui, fi(x <O}
* fi(x) component-wise monotonous (i=1,2 opposite).

X2 X2
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* |deal Formulation
yil' +yl® <z < yru' +you’
3 (x,9)< 0 VJ C[d],i € 2]
y1 +y2 =1
yi € 10,1} i € [2]
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Generalization and Simplification

 More than 2 sets (with general “opposite condition”).

* Generalization of the monotone/isotone condition
(beyond affine transformation)

* Significantly smaller formulation: One non-linear
constraint per set.
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fi(z,y)<0 Vie[2
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Details of Size Reduction

Ci={zeR*: "<z <u', fi(z)<0}

G; = {xERd . fi(x) <0}

 Original formulation™:
X j 7€ dJ
va, (7] ;) < i, |VJ C |d] ([:E]J)] =

e Smaller formulation™:

ve, ([17) <wi (a]") = max{a;, 0}

J

— max can cause representability issues.

*k . . . . P
assuming some simplifying conditions on bounds 11/14



A Case in Which Both Formulations Are Small

Vi € 2]

i € (2]
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Algebraic Representation Issues

Ci + (R4 x {0})
17 < a9 <1

&

—1,1] x 0

Cy + (Ry x {0}) : (max{z1,0})* <2y <1

 Non-basic semi-algebraic set V /
contained in formulation.

* Finite polynomial inequalities
requires max or auxiliary vars.
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Summary

* Small ideal formulations without “variable copies”.
— Piecewise representation by (nearly) homothetic sets.
— Representation of gauge formulation = gauge calculus.

* More on the paper (arXiv:1704.03954):

— More examples and generalizations:

* Orthogonal sets, polyhedral formulations by Balas, Blair
and Jeroslow, and “truly” non-polyhedral sets.

— More construction techniques, gauge calculus, etc.
— Necessary and sufficient conditions for piecewise.
formulation being ideal (more geometric conditions).
» Support function matching / “Lifting” for more
general non-convex sets: Tawarmalani et al. ‘10
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