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0-1 Mixed	Integer	Convex	(MICP)	Formulations

• 0-1	MICP	=	Unions	of	Closed	Convex	Sets,	even	with	
different	recession	cones	(M.	Lubin,	I.	Zadik,	V.	‘16).
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• General	Integer	MICP	=	much	more	complicated!
– is	not	general	MILP	rep.,	but	is	MICP	rep.
– Prime	numbers	is	not	MICP	rep.,	but	is	non-convex	MIP	rep.
– See	IPCO	talk	by	Miles	and	Ilias in	June	at	Waterloo.

S = {1} [ 2N



“Extended” /	Non-Extended	Formulations	for									

Small?	and	strong	(ideal*)
Speed:	worse	than	expected

"Extended”	≡	Variable	Copies Non-Extended	

Small,	but	weak?
Speed:	better than	expected

*Integral	y in	extreme	points	of	LP	relaxation 2 /	14



Non-Polyhedral	=	Different	Representations

e.g.	Ceria	and	Soares ‘99 e.g.	Ben-tal and	Nemirovski ’01
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Generic	Formulation	Through	Gauge	Functions	

• For						such	that																				let:

• If																				then	ideal formulation:bi 2 Ci
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Simple	Non-Extended	Ideal	Formulation

• Unions	of	(nearly)	Homothetic	Closed	Convex	Sets:																																							

Ci = �iC + bi + C1
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Sticking	Homothetic	Formulations	Together

C1

C2

Combine	4	
homothetic	
formulations

Valid,	but	not	ideal!

Right	relaxations yield	
ideal	formulation
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Sufficient	Conditions	For	Ideal	Formulation

C1

C2

Cj
1

Cj
2

s.t.

8i 2 {1, 2}

8u 2 Rn 9j

�S(u) := sup{u · x : x 2 S}

�Ci(u) = �Cj
i
(u)

Similar to	“lifting”	of	e.g.	
Tawarmalani et	al.	‘10
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May	Need	to	“Find”	Homothetic	Constraints

x

2
1  x2  1

[�1, 1]⇥ 0

C1

C2

Ci + (R� ⇥ {0})

Ci + (R+ ⇥ {0})

C1 + (R+ ⇥ {0}) :

(max{x1, 0})2  x2  1

Similar	to	Bestuzheva et	al.	
‘16	who	divide	sets	in	two.
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Existing	Small	Ideal	Formulations	(Isotone	Sets)

• Studied	by	Hijazi	et	al.	‘12	and	Bonami et	al.	’15	(n=1,	2):	
–

• component-wise	monotonous	(i=1,2	opposite).

• Ideal	Formulation

fi(x)
x2

x1

x2

x1

y1l
1 + y2l

2  x  y1u
1 + y2u

2

f

i
J (x, y) 0 8J ✓ [d], i 2 [2]

y1 + y2 = 1

yi 2 {0, 1} i 2 [2]
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Generalization	and	Simplification	

• More	than	2	sets	(with	general	“opposite	condition”).	
• Generalization	of	the	monotone/isotone	condition	
(beyond	affine	transformation)

• Significantly	smaller	formulation:	One	non-linear	
constraint	per	set.

y1l
1 + y2l

2  x  y1u
1 + y2u

2

f

i
J (x, y) 0 8J ✓ [d], i 2 [2]

y1 + y2 = 1

yi 2 {0, 1} i 2 [2]

f̂

i (x, y) 0 8i 2 [2]
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Details	of	Size	Reduction

• Original	formulation*:

Gi =
�
x 2 Rd : fi(x)  0

 

• Smaller	formulation*:

�Gi

⇣
[x]

+
⌘
 yi

⇣
[x]

+
⌘

j
:= max{xj , 0}

– max	can	cause	representability	issues.

�Gi ([x]J)  yi, 8J ✓ [d] ([x]J)j :=

(
xj j 2 J

0 o.w.

*assuming	some	simplifying	conditions	on	bounds 11 /	14



A	Case	in	Which	Both	Formulations	Are	Small

y1l
1 + y2l

2  x  y1u
1 + y2u

2

f

i (x, y) 0 8i 2 [2]

y1 + y2 = 1

yi � {0, 1} i 2 [2]
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Algebraic	Representation	Issues

x

2
1  x2  1

[�1, 1]⇥ 0

C1

C2

Ci + (R+ ⇥ {0})

C1 + (R+ ⇥ {0}) :
(max{x1, 0})2  x2  1
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This set is depicted in Figure 3 in gray where we can confirm that it is semi-
algebraic (it is the convex hull of portions of two parabolas). However, we can
check that the Zariski closure of its boundary (smallest algebraic variety that
contains this boundary) is given by

Z :=

(

x 2 R2 :

✓✓
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2
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)

and depicted in black in Figure 3. We can also check that Z \ int (M) 6= ;,
which is a known impediment for a set to be basic semi-algebraic [1,6]. ut

-1 0 1

0

1
2

Fig. 3 Set M from Example 9 and its Zariski closure.

Note that for the sets in Examples 1–3 and in Example 5 the description
of the Minkoswki sum from Lemma 4 does not require the operation (·)+
and Q (C) is basic semi-algebraic. In contrast, the operation is required for
Example 6 and Q (C) is not basic semi-algebraic. This shows that operation
(·)+ can a↵ect the properties of Q (C) and that this is strongly tied to the
Minkoswki sum operation. In fact, using Proposition 6 below, Example 9 yields
C1 := [�1, 1]⇥ {0} and C2 :=

�

x 2 [�1, 1]⇥ [0, 1] : x2

1

 x
2

 

as examples of
basic semi-algebraic sets whose Mikowski sum is not basic semi-algebraic.

6 Necessary and Su�cient Conditions for Piecewise Formulations

Example 5 shows how condition (13b) of Proposition 5 may not be necessary
to obtain an ideal formulation. We now give necessary and su�cient strength
conditions through a variant of (13a) that guarantees formulation validity.

Definition 6 Let C :=
�

Ci
 k

i=1

2 Cn and Cj :=
�

Cj,i
 k

i=1

2 Cn for j 2 JmK
be such that Ci =

Tm
j=1

Cj,i for all i 2 JkK so that a valid formulation of

x 2
Sk

i=1

Ci is given by

(x, y) 2 Q
�

Cj
�

8j 2 JmK ,
Xk

i=1

yi, y 2 {0, 1}k . (27)

• Non-basic semi-algebraic	set	
contained	in	formulation.

• Finite	polynomial	inequalities	
requires	max	or	auxiliary	vars.
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Summary

• Small ideal formulations	without	“variable	copies”.
– Piecewise	representation	by	(nearly)	homothetic	sets.
– Representation	of	gauge	formulation	=	gauge	calculus.

• More	on	the	paper	(arXiv:1704.03954):
– More	examples	and	generalizations:
• Orthogonal	sets,	polyhedral	formulations	by	Balas,	Blair	
and	Jeroslow,	and	“truly”	non-polyhedral	sets.

– More	construction	techniques,	gauge	calculus,	etc.
– Necessary and	sufficient conditions	for	piecewise.	
formulation	being	ideal	(more	geometric	conditions).

• Support	function	matching	/	“Lifting”	for	more	
general	non-convex	sets:	Tawarmalani et	al.	‘10
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