Small and Strong Formulations for Unions of Convex Sets from the Cayley Embedding

Juan Pablo Vielma

Massachusetts Institute of Technology

INFORMS Annual Meeting, Houston, TX. October, 2017.

Supported by NSF grant CMMI-1351619

"Extended" / Non-Extended Formulations for

tions for
$$\bigcup_{i=1}^{n} C_i$$

 \mathbf{n}

"Extended" ≡ Variable Copies

 $C_i = \left\{ x \in \mathbb{R}^d : A^i x \le b^i \right\}$

Non-Extended

$$A^{i} x^{i} \leq b^{i} y_{i} \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \qquad \forall i \in [n]$$

Small? and strong (ideal*) Speed: worse than expected $\begin{vmatrix} A^{i}x - b^{i} \leq M_{i} (1 - y_{i}) & \forall i \in [n] \\ \sum_{i=1}^{n} y_{i} = 1 \\ y \in \{0, 1\}^{n} \\ x \in \mathbb{R}^{d} & \forall i \in [n] \end{vmatrix}$

Small, but weak? Speed: better than expected

^{*}Integral y in extreme points of LP relaxation

Non-Polyhedral = Different Representations

e.g. Ceria and Soares '99

$$C_{i} = \left\{ x \in \mathbb{R}^{d} : f_{i}(x) \leq 0 \right\}$$

$$f(x,y) = \left\{ \begin{array}{c} yf(x/y) & \text{if } y > 0 \\ \lim_{\alpha \downarrow 0} \alpha f(x' - x + x/\alpha) & \text{if } y = 0 \\ +\infty & \text{if } y < 0 \end{array} \right\}$$

$$C_{i} = \left\{ x \in \mathbb{R}^{d} : \exists u \in \mathbb{R}^{p_{i}} \text{ s.t.} \\ A^{i}x + D^{i}u - b \in K^{i} \right\}$$

$$K^{i} \text{ closed convex cone}$$

$$K^{i} \text{ closed convex cone}$$

$$A^{i}x^{i} + D^{i}u^{i} - by_{i} \in K^{i} \quad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \quad \forall i \in [n]$$

$$u^{i} \in \mathbb{R}^{p_{i}} \quad \forall i \in [n]$$

Generic Formulation Through Gauge Functions

- For *C* such that $0 \in int(C)$ let: $\gamma_C(x) := inf\{\lambda > 0 : x \in \lambda C\}$ $epi(\gamma_C) = cone(C \times \{1\})$
- If $b^i \in C_i$ then ideal formulation:

$$\gamma_{C^{i}-\{b^{i}\}} \left(x^{i} - y_{i}b^{i} \right) \leq y_{i} \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0,1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \qquad \forall i \in [n]$$

Simple Non-Extended Ideal Formulation

• Unions of (nearly) Homothetic Closed Convex Sets:

$$\gamma_{C} \left(x - \sum_{i=1}^{n} y_{i} b^{i} \right) \leq \sum_{i=1}^{n} \lambda_{i} y_{i}$$
$$\sum_{i=1}^{n} y_{i} = 1, \ y \in \{0, 1\}^{n}$$

Sticking Homothetic Formulations Together

Sticking Homothetic Formulations Together

Sufficient Conditions For Ideal Formulation

May Need to "Find" Homothetic Constraints

May Need to "Find" Homothetic Constraints

Similar to Bestuzheva et al. '16 who divide sets in two.

$$C_i + (\mathbb{R}_- \times \{0\})$$

Existing Small Ideal Formulations (Isotone Sets)

• Studied by Hijazi et al. '12 and Bonami et al. '15 (n=1, 2):

$$-C_i = \left\{ x \in \mathbb{R}^d : l^i \le x \le u^i, \quad f_i(x) \le 0 \right\}$$

• $f_i(x)$ component-wise monotonous (i=1,2 opposite).

• Ideal Formulation

$$y_{1}l^{1} + y_{2}l^{2} \leq x \leq y_{1}u^{1} + y_{2}u^{2}$$

$$f_{J}^{i}(x, y) \leq 0 \qquad \forall J \subseteq [d], i \in [2]$$

$$y_{1} + y_{2} = 1$$

$$y_{i} \in \{0, 1\} \qquad i \in [2]$$

Generalization and Simplification

- More than 2 sets (with general "opposite condition").
- Generalization of the monotone/isotone condition (beyond affine transformation)
- Significantly smaller formulation: One non-linear constraint per set.

$$y_{1}l^{1} + y_{2}l^{2} \leq x \leq y_{1}u^{1} + y_{2}u^{2}$$

$$f_{J}^{i}(x,y) \leq 0 \quad \forall J \subseteq [d], i \in [2]$$

$$y_{1} + y_{2} = 1$$

$$y_{i} \in \{0,1\} \quad i \in [2]$$

$$\hat{f}^{i}(x,y) \leq 0 \quad \forall i \in [2]$$

Details of Size Reduction

$$C_i = \left\{ x \in \mathbb{R}^d : l^i \le x \le u^i, \quad f_i(x) \le 0 \right\}$$
$$G_i = \left\{ x \in \mathbb{R}^d : f_i(x) \le 0 \right\}$$

• Original formulation:

$$\gamma_{G_i}\left([x]_J\right) \le y_i, \forall J \subseteq [d] \quad \left([x]_J\right)_j := \begin{cases} x_j & j \in J \\ 0 & o.w. \end{cases}$$

1

• Smaller formulation:

$$\gamma_{G_i}\left(\left[x\right]^+\right) \le y_i \quad \left(\left[x\right]^+\right)_j := \max\{x_j, 0\}$$

- max can cause representability issues.

Algebraic Representation Issues

 $C_1 + (\mathbb{R}_+ \times \{0\}) : (\max\{x_1, 0\})^2 \le x_2 \le 1$

- Non-basic semi-algebraic set contained in formulation.
- Finite polynomial inequalities requires max or auxiliary vars. x_2

 \mathcal{X}_{1}

Summary

- Small ideal formulations without "variable copies".
 - Piecewise representation by (nearly) homothetic sets.
 - Representation of gauge formulation = gauge calculus.
- More on the paper (arXiv:1704.03954):
 - More examples and generalizations:
 - Orthogonal sets, polyhedral formulations by Balas, Blair and Jeroslow, and "truly" non-polyhedral sets.
 - More construction techniques, gauge calculus, etc.
 - Necessary and sufficient conditions for piecewise.
 formulation being ideal (more geometric conditions).
- Support function matching / "Lifting" for more general non-convex sets: Tawarmalani et al. '10