Small and Strong Formulations for Unions of Convex Sets from the Cayley Embedding

Juan Pablo Vielma

Massachusetts Institute of Technology

INFORMS Annual Meeting,
Houston, TX. October, 2017.
"Extended" / Non-Extended Formulations for $\bigcup_{i=1}^{n} C_{i}$
$C_{i}=\left\{x \in \mathbb{R}^{d}: A^{i} x \leq b^{i}\right\}$
"Extended" 三 Variable Copies
Non-Extended

$$
\begin{array}{rlr}
A^{i} x^{i} & \leq b^{i} y_{i} \quad \forall i \in[n] \\
\sum_{i=1}^{n} x^{i} & =x & \\
\sum_{i=1}^{n} y_{i} & =1 & \\
y & \in\{0,1\}^{n} & \\
x, x^{i} & \in \mathbb{R}^{d} \quad \forall i \in[n]
\end{array}
$$

Small? and strong (ideal*)
Speed: worse than expected

$$
\left.\left\lvert\, \begin{array}{rlrl}
A^{i} x-b^{i} & \leq M_{i}\left(1-y_{i}\right) & & \forall i \in[n] \\
\sum_{i=1}^{n} y_{i} & =1 & & \\
y & \in\{0,1\}^{n} & & \\
x & \in \mathbb{R}^{d} & \forall i \in[n]
\end{array}\right.\right]
$$

Small, but weak?

Speed: better than expected

Non-Polyhedral = Different Representations

e.g. Ceria and Soares '99

$$
\begin{gathered}
C_{i}=\left\{x \in \mathbb{R}^{d}: f_{i}(x) \leq 0\right\} \\
\tilde{f}(x, y)= \begin{cases}y f(x / y) & \text { if } y>0 \\
\lim _{\alpha \downarrow 0} \alpha f\left(x^{\prime}-x+x / \alpha\right) & \text { if } y=0 \\
+\infty & \text { if } y<0\end{cases}
\end{gathered}
$$

$$
\begin{array}{rlrl}
\tilde{f}_{i}\left(x^{i}, y_{i}\right) & \leq 0 \quad \forall i \in[n] \\
\sum_{i=1}^{n} x^{i} & =x & & \\
\sum_{i=1}^{n} y_{i} & =1 & \\
y & \in\{0,1\}^{n} & \\
x, x^{i} & \in \mathbb{R}^{d} \quad \forall i \in[n]
\end{array}
$$

e.g. Ben-tal and Nemirovski '01

$$
C_{i}=\left\{x \in \mathbb{R}^{d}: \begin{array}{r}
\exists u \in \mathbb{R}^{p_{i}} \text { s.t. } \\
A^{i} x+D^{i} u-b \in K^{i}
\end{array}\right\}
$$

K^{i} closed convex cone

$$
\begin{aligned}
A^{i} x^{i}+D^{i} u^{i}-b y_{i} & \in K^{i} & & \forall i \in[n] \\
\sum_{i=1}^{n} x^{i} & =x & & \\
\sum_{i=1}^{n} y_{i} & =1 & & \\
y & \in\{0,1\}^{n} & & \\
x, x^{i} & \in \mathbb{R}^{d} & & \forall i \in[n] \\
u^{i} & \in \mathbb{R}^{p_{i}} & & \forall i \in[n]
\end{aligned}
$$

Generic Formulation Through Gauge Functions

- For C such that $\mathbf{0} \in \operatorname{int}(C)$ let:

$$
\begin{aligned}
& \gamma_{C}(x):=\inf \{\lambda>0: x \in \lambda C\} \\
& \operatorname{epi}\left(\gamma_{C}\right)=\operatorname{cone}(C \times\{1\})
\end{aligned}
$$

- If $b^{i} \in C_{i}$ then ideal formulation:

$$
\begin{array}{rlrl}
\gamma_{C^{i}-\left\{b^{i}\right\}}\left(x^{i}-y_{i} b^{i}\right) & \leq y_{i} \quad \forall i \in[n] \\
\sum_{i=1}^{n} x^{i} & =x & \\
\sum_{i=1}^{n} y_{i} & =1 \\
y & \in\{0,1\}^{n} \\
x, x^{i} & \in \mathbb{R}^{d} \quad \forall i \in[n]
\end{array}
$$

Simple Non-Extended Ideal Formulation

- Unions of (nearly) Homothetic Closed Convex Sets:

$$
C_{i}=\lambda_{i} C+b^{i}+C_{\infty}
$$

C_{2}

$$
\begin{aligned}
\gamma_{C}\left(x-\sum_{i=1}^{n} y_{i} b^{i}\right) & \leq \sum_{i=1}^{n} \lambda_{i} y_{i} \\
\sum_{i=1}^{n} y_{i} & =1, y \in\{0,1\}^{n}
\end{aligned}
$$

Sticking Homothetic Formulations Together

Sticking Homothetic Formulations Together

Sufficient Conditions For Ideal Formulation

$$
\begin{gathered}
\sigma_{S}(u):=\sup \{u \cdot x: x \in S\} \\
=\quad \begin{array}{c}
C_{1}^{j} \\
\quad \forall u \in \mathbb{R}^{n} \quad \exists j \\
\text { s.t. } \\
\sigma_{C_{i}}(u)=\sigma_{C_{i}^{j}}(u) \\
C_{2}^{j} \quad \forall i \in\{1,2\}
\end{array}
\end{gathered}
$$

Similar to "lifting" of e.g. Tawarmalani et al. '10

May Need to "Find" Homothetic Constraints

$x_{1}^{2} \leq x_{2} \leq 1$
$[-1,1] \times 0$

May Need to "Find" Homothetic Constraints

$$
C_{2}
$$

$$
x_{1}^{2} \leq x_{2} \leq 1
$$

$$
[-1,1] \times 0
$$

$C_{1}+\left(\mathbb{R}_{+} \times\{0\}\right):$

$$
\left(\max \left\{x_{1}, 0\right\}\right)^{2} \leq x_{2} \leq 1
$$

Similar to Bestuzheva et al. ' 16 who divide sets in two.

$$
C_{i}+\left(\mathbb{R}_{+} \times\{0\}\right)
$$

$C_{i}+\left(\mathbb{R}_{-} \times\{0\}\right)$

Existing Small Ideal Formulations (Isotone Sets)

- Studied by Hijazi et al. '12 and Bonami et al. '15 (n=1, 2):

$$
-C_{i}=\left\{x \in \mathbb{R}^{d}: l^{i} \leq x \leq u^{i}, \quad f_{i}(x) \leq 0\right\}
$$

- $f_{i}(x)$ component-wise monotonous ($\mathrm{i}=1,2$ opposite).

- Ideal Formulation

$$
\begin{aligned}
y_{1} l^{1}+y_{2} l^{2} \leq x & \leq y_{1} u^{1}+y_{2} u^{2} & & \\
f_{J}^{i}(x, y) & \leq 0 & & \forall J \subseteq[d], i \in[2] \\
y_{1}+y_{2} & =1 & & \\
y_{i} & \in\{0,1\} & & i \in[2]
\end{aligned}
$$

Generalization and Simplification

- More than 2 sets (with general "opposite condition").
- Generalization of the monotone/isotone condition (beyond affine transformation)
- Significantly smaller formulation: One non-linear constraint per set.

$$
\begin{array}{rlrl}
y_{1} l^{1}+y_{2} l^{2} & \leq x & \leq y_{1} u^{1}+y_{2} u^{2} & \\
f^{i}(x, y) & \leq 0 & \forall J \subseteq[d], i \subset[2] \\
y_{1}+y_{2} & =1 & & \\
y_{i} & \in\{0,1\} & i \in[2] \\
f^{i}(x, y) & \leq 0 \quad \forall i \in[2] &
\end{array}
$$

Details of Size Reduction

$$
\begin{aligned}
& C_{i}=\left\{x \in \mathbb{R}^{d}: l^{i} \leq x \leq u^{i}, \quad f_{i}(x) \leq 0\right\} \\
& G_{i}=\left\{x \in \mathbb{R}^{d}: f_{i}(x) \leq 0\right\}
\end{aligned}
$$

- Original formulation:

$$
\gamma_{G_{i}}\left([x]_{J}\right) \leq y_{i}, \forall J \subseteq[d] \quad\left([x]_{J}\right)_{j}:= \begin{cases}x_{j} & j \in J \\ 0 & \text { o.w. }\end{cases}
$$

- Smaller formulation:
$\gamma_{G_{i}}\left([x]^{+}\right) \leq y_{i} \quad\left([x]^{+}\right)_{j}:=\max \left\{x_{j}, 0\right\}$
- max can cause representability issues.

Algebraic Representation Issues

$$
\begin{aligned}
& C_{1} \\
& x_{1}^{2} \leq x_{2} \leq 1 \\
& C_{2} \\
& C_{1}+\left(\mathbb{R}_{+} \times\{0\}\right):\left(\max \left\{x_{1}, 0\right\}\right)^{2} \leq x_{2} \leq 1
\end{aligned}
$$

- Non-basic semi-algebraic set contained in formulation.
- Finite polynomial inequalities requires max or auxiliary vars.

Summary

- Small ideal formulations without "variable copies".
- Piecewise representation by (nearly) homothetic sets.
- Representation of gauge formulation = gauge calculus.
- More on the paper (arXiv:1704.03954):
- More examples and generalizations:
- Orthogonal sets, polyhedral formulations by Balas, Blair and Jeroslow, and "truly" non-polyhedral sets.
- More construction techniques, gauge calculus, etc.
- Necessary and sufficient conditions for piecewise. formulation being ideal (more geometric conditions).
- Support function matching / "Lifting" for more general non-convex sets: Tawarmalani et al. '10

