Embedding Formulations for Unions of Convex Sets

Juan Pablo Vielma

Massachusetts Institute of Technology

INFORMS Annual Meeting, Nashville, TN. November, 2016.

Supported by NSF grant CMMI-1351619

Nonlinear Mixed <u>0-1</u> Integer Formulations

• Modeling Finite Alternatives = Unions of Convex Sets

$$x \in \bigcup_{i=1}^{n} C_{i} \subseteq \mathbb{R}^{d}$$

$$C_{1}$$

$$C_{3}$$

$$C_{4}$$

Extended and Non-Extended Formulations for $\bigcup_{i=1}^{n} C_i$

$$C_{i} = \left\{ x \in \mathbb{R}^{d} : A^{i}x \leq b^{i} \right\}$$
Extended
$$A^{i}x^{i} \leq b^{i}y_{i} \quad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \quad \forall i \in [n]$$
Non-Extended
$$A^{i}x - b^{i} \leq M_{i}(1 - y_{i}) \quad \forall i \in [n]$$

$$A^{i}x - b^{i} \leq M_{i}(1 - y_{i}) \quad \forall i \in [n]$$

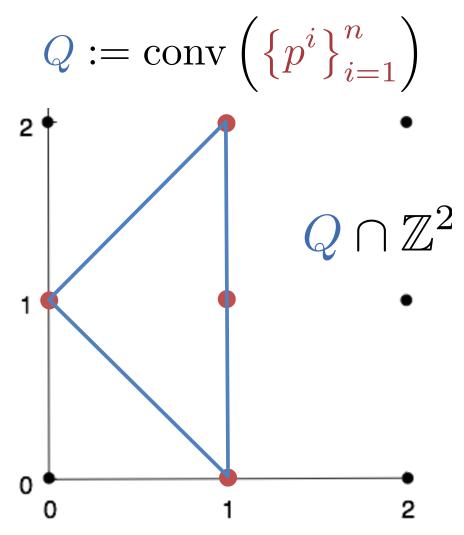
Small? and strong (ideal^{*})

Small, but weak?

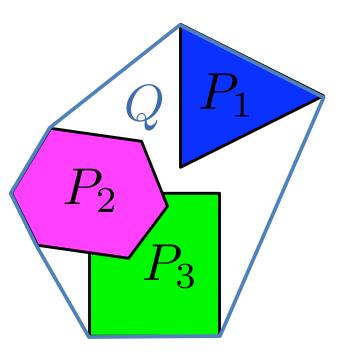
*Integral y in extreme points of LP relaxation

Constructing Non-extended Ideal Formulations

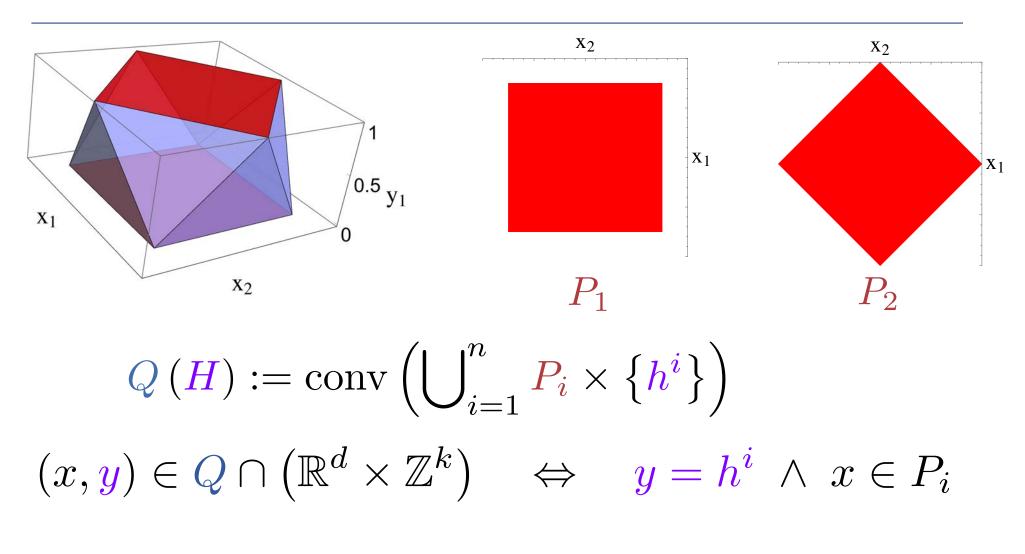
• Pure Integer :



• Mixed Integer:

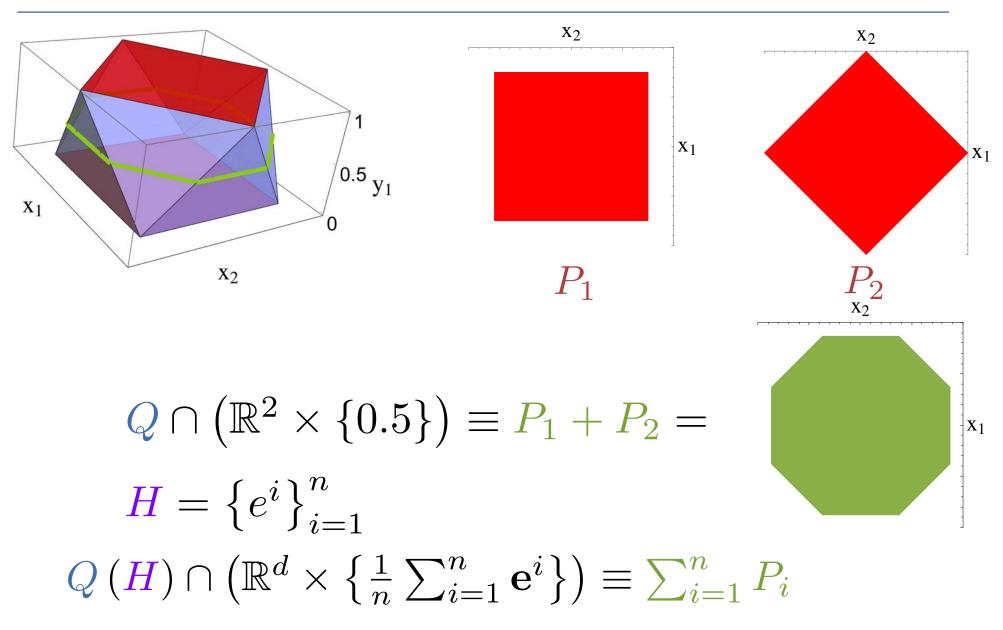


Embedding Formulation = Ideal non-Extended



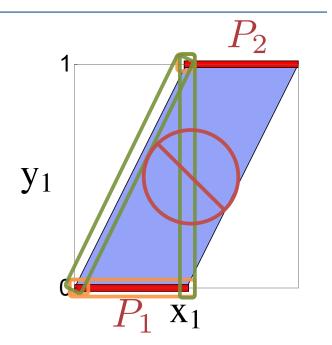
 $\operatorname{ext}(Q) \subseteq \mathbb{R}^d \times \mathbb{Z}^k \qquad H := \left\{h^i\right\}_{i=1}^n \subseteq \left\{0,1\right\}^k, \quad h^i \neq h^j$

Unary Encoding, Minkowski Sum and Cayley Trick

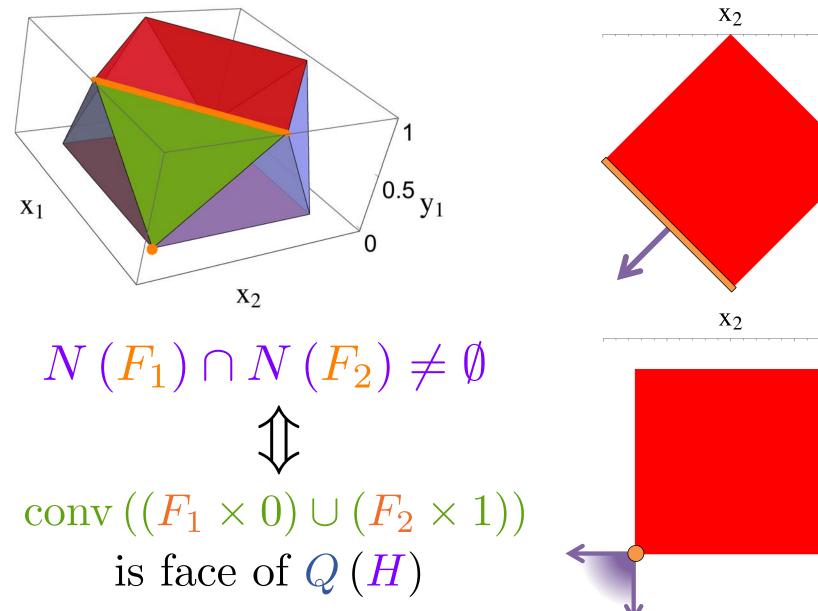


Faces of Cayley Embedding

- Two types of facets (or faces): $-P_1 \times \{0\} \equiv y_i \geq 0$
 - $-\operatorname{conv}\left(\left(F_1\times 0\right)\cup\left(F_2\times 1\right)\right)$
 - F_i proper face of P_i
 - Not all combinations of faces
 - Which ones are valid?



Valid Combinations = Common Normals



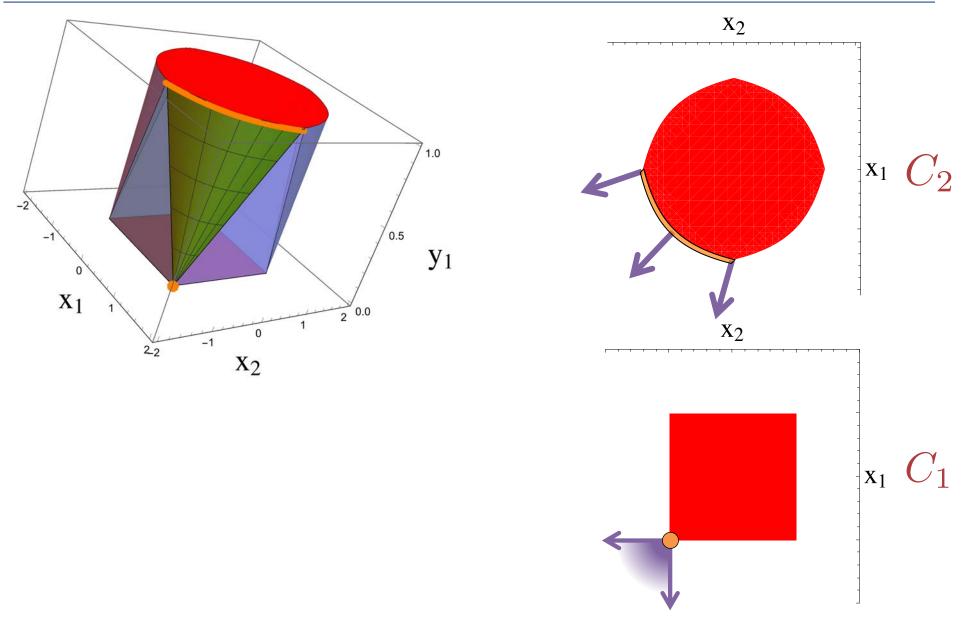
Embedding Formulations

 P_2

X₁

 \mathbf{X}_{1}

Characterization Extends to Closed Convex Sets



Easy Case: Nearly-Homothetic Convex Sets (NHC)

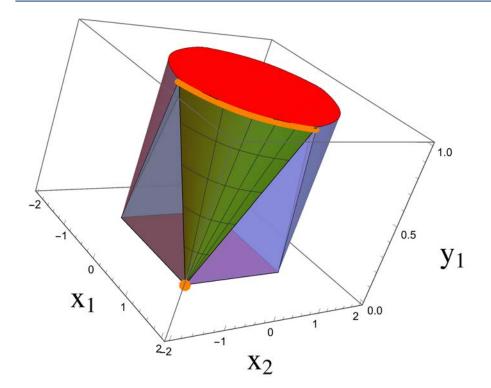
•
$$C_i = \lambda_i C + b^i + C_\infty$$

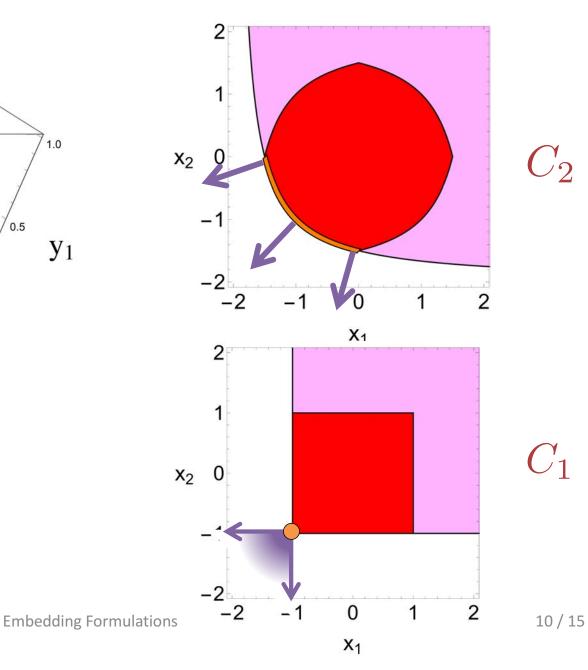
 $\operatorname{conv} \left(\bigcup_{i=1}^n \left(C_i \times \{ \mathbf{e}^i \} \right) \right) =$
 $\gamma_C \left(x - \sum_{i=1}^n y_i b^i \right) \leq \sum_{i=1}^n \lambda_i y_i$
 $\sum_{i=1}^n y_i = 1$
 $y \geq 0$ $\forall i \in [n]$

 $\gamma_C(x) := \inf\{\lambda > 0 : x \in \lambda C\}$

 Generalizes polyhedral results from Balas '85, Jeroslow '88 and Blair '90

General Sets: Reduce to Intersection of NHCs





 \mathbb{C}_2

 C_1

Small Formulations for Isotone Sets

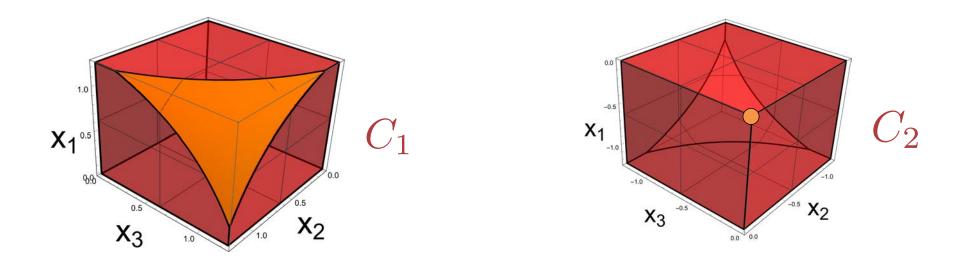
• Studied by Hijazi et al. '12 and Bonami et al. '15 (n=1, 2):

$$-C_i = \left\{ x \in \mathbb{R}^d : l^i \le x \le u^i, \quad f_i(x) \le 0 \right\}$$

• $f_i(x)$ component-wise monotonous (i=1,2 opposite).

• Ideal Formulation $y_1 l^1 + y_2 l^2 \le x \le y_1 u^1 + y_2 u^2$ $f_J^i(x, y) \le 0$ $\forall J \subseteq [d], i \in [2]$ $y_1 + y_2 = 1$ $y_i \in \{0, 1\}$ $i \in [2]$

Boundary Structure = Redundancy Detection



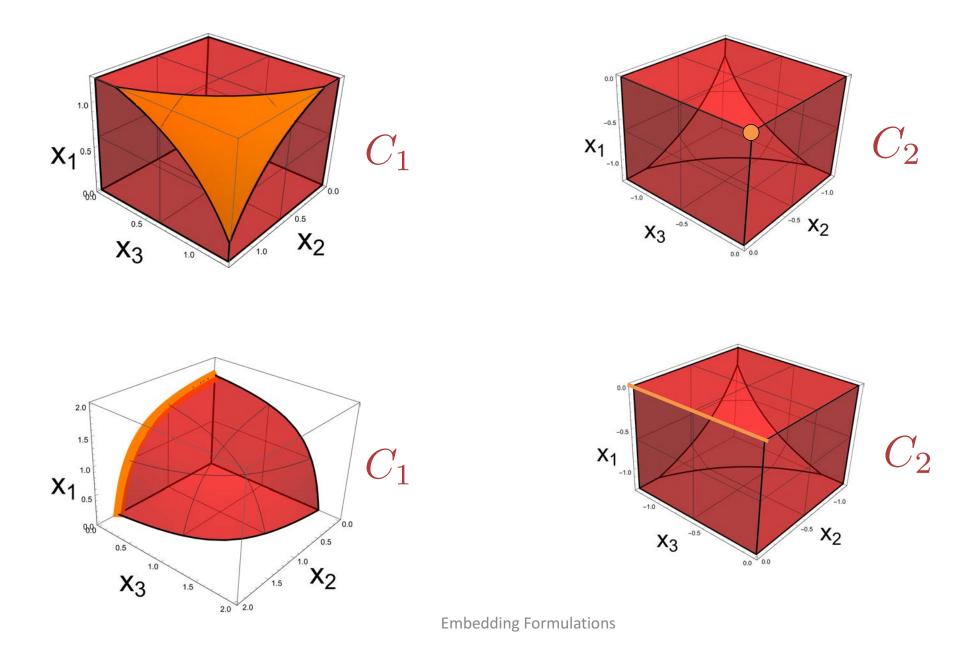
$$y_{1}l^{1} + y_{2}l^{2} \leq x \leq y_{1}u^{1} + y_{2}u^{2}$$

$$f^{i}(x, y) \leq 0 \qquad \forall i \in [2]$$

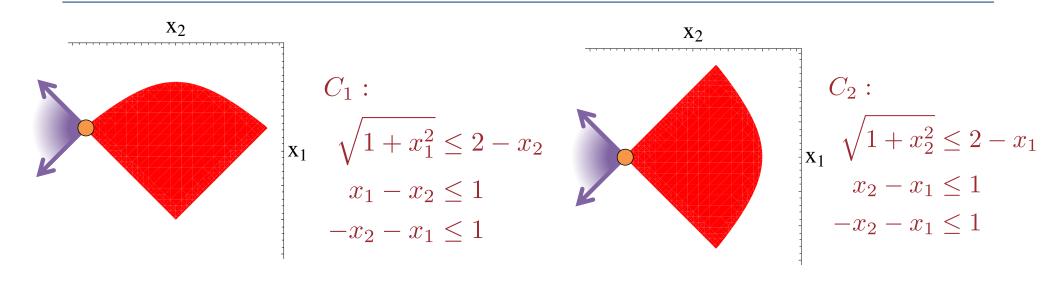
$$y_{1} + y_{2} = 1$$

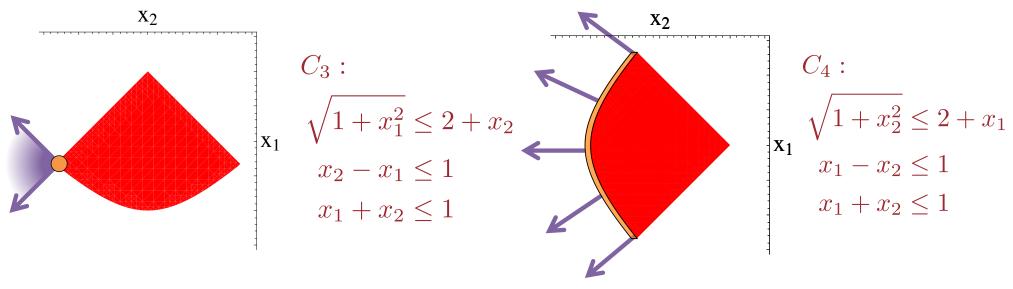
$$y_{i} \geq \{0, 1\} \qquad i \in [2]$$

Boundary Structure = Redundancy Detection

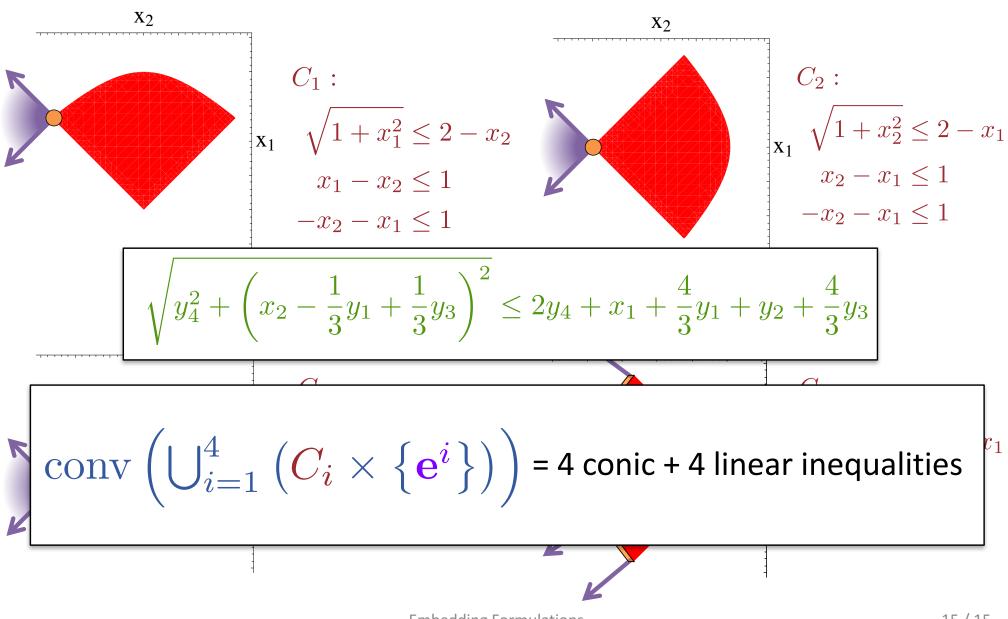


Also Non-isotone Sets and n>2 : Pizza Slices

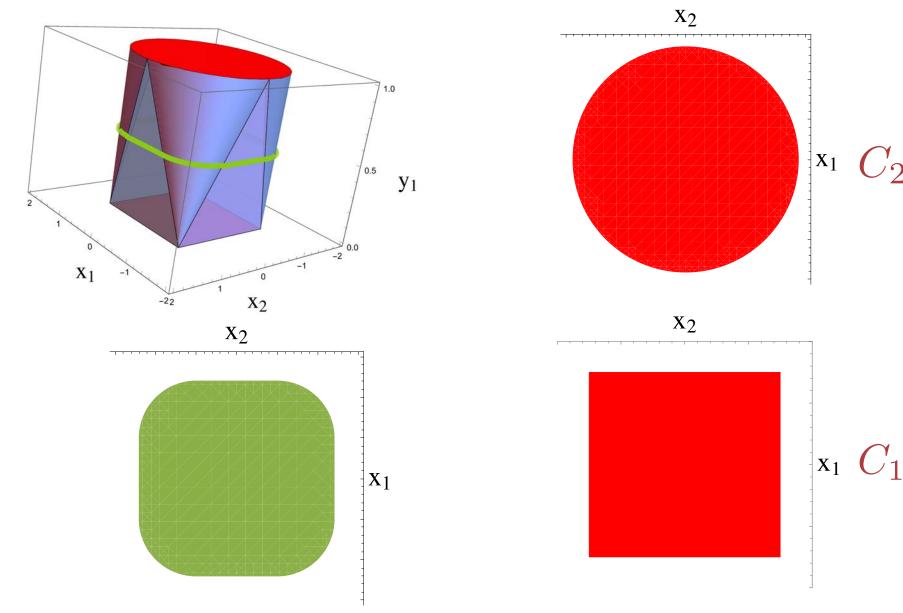




Also Non-isotone Sets and n>2 : Pizza Slices

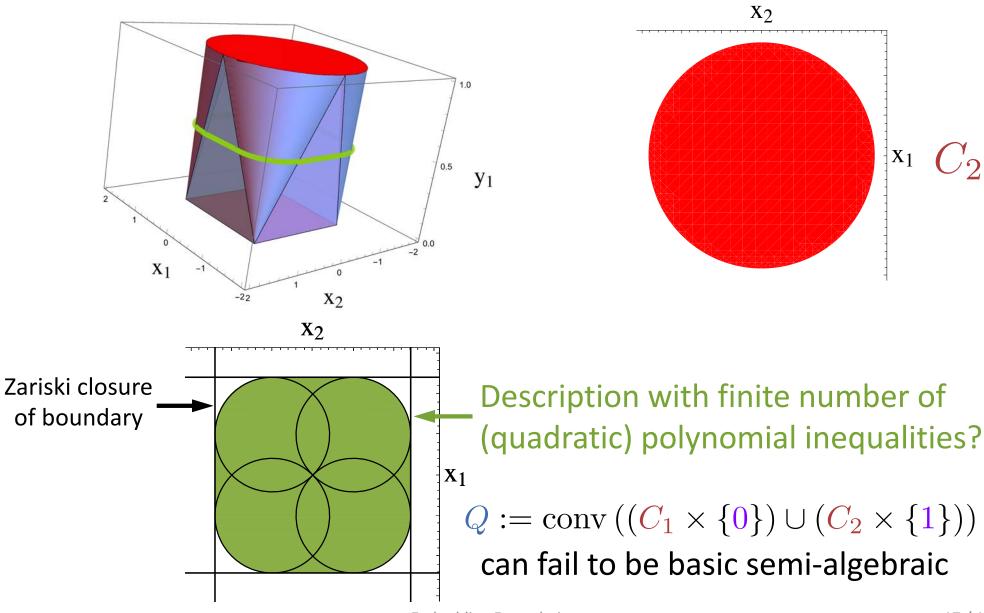


Bad Example: Representability Issues



Embedding Formulations

Bad Example: Representability Issues



- Embedding Formulations = Systematic procedure for ideal non-extended formulations
- Can yield small practical formulations
- Not always practical (basic semi-algebraic representability)