Discrete Geometry for Small and Strong Mixed Integer Programming Formulations

Juan Pablo Vielma

Massachusetts Institute of Technology

Seventh Cargese Workshop on Combinatorial Optimization, Institut d'Etudes Scientifiques de Cargèse, Corsica (France). October, 2016.

Supported by NSF grant CMMI-1351619

Nonlinear Mixed <u>0-1</u> Integer Formulations

• Modeling Finite Alternatives = Unions of Convex Sets

$$x \in \bigcup_{i=1}^{n} C_i \subseteq \mathbb{R}^d$$

$$\overbrace{C_1}_{C_3}$$

$$\overbrace{C_4}$$

Extended and Non-Extended Formulations for $\bigcup_{i=1}^{n} C_i$

$$C_{i} = \left\{ x \in \mathbb{R}^{d} : A^{i}x \leq b^{i} \right\}$$
Extended
$$A^{i}x^{i} \leq b^{i}y_{i} \quad \forall i \in [n]$$

$$\sum_{i=1}^{n} x^{i} = x$$

$$\sum_{i=1}^{n} y_{i} = 1$$

$$y \in \{0, 1\}^{n}$$

$$x, x^{i} \in \mathbb{R}^{d} \quad \forall i \in [n]$$
Non-Extended
$$A^{i}x - b^{i} \leq M_{i}(1 - y_{i}) \quad \forall i \in [n]$$

$$A^{i}x - b^{i} \leq M_{i}(1 - y_{i}) \quad \forall i \in [n]$$

Small? and strong (ideal^{*})

Small, but weak?

*Integral y in extreme points of LP relaxation

Embedding Formulations

Outline

- Smallest ideal non-extended linear formulation
 - Generalization of Cayley Embedding of Polytopes
 - Hyperplane arrangements
- Small ideal non-extended nonlinear formulations
 - Boundary structure of Cayley Embedding: from polytopes to closed convex sets
- "Formulations" with a general integer variables (possibly a fixed number)

Ideal Non-Extended Formulations and Hyperplane Arrangements

Embedding Formulation = Ideal non-Extended

Embedding Formulation = Ideal non-Extended

Special Ordered Sets = Simplex Faces = $\mathcal{P} := \{P_i\}_{i=1}^n$

•
$$\Delta^{d+1} := \left\{ x \in \mathbb{R}^{d+1}_{+} : \sum_{i=1}^{d+1} x_i = 1 \right\} = \operatorname{conv} \left(\left\{ e^i \right\}_{i=1}^{d+1} \right)$$

 $P_i := \operatorname{conv} \left(\left\{ e^j \right\}_{j \in T_i} \right) = \left\{ x \in \Delta^{d+1} : \sum_{j \notin T_i} x_i \le 0 \right\}$
 $T_i \subseteq \{1, \dots, d+1\}$
• $\operatorname{mc} \left(\mathcal{P} \right) := \operatorname{min}_H \left\{ \operatorname{size} \left(Q \left(H \right) \right) \right\},$

size (Q(H)) := # facets

 $\operatorname{mc}_{G}(\mathcal{P}) := \operatorname{min}_{H} \left\{ \operatorname{size}_{G} \left(Q\left(H \right) \right) \right\},$ $\operatorname{size}_{G} \left(Q\left(H \right) \right) := \# \text{ non-bound facets}$

Embedding Formulations

Special Ordered Sets of Type 2 (SOS2) = $\mathcal{P} := \{P_i\}_{i=1}^n$

•
$$P_i := \operatorname{conv}(\{e^i, e^{i+1}\}) \subseteq \Delta^{n+1}, \quad i \in [n]$$

Special Ordered Sets of Type 2 (SOS2) = $\mathcal{P} := \{P_i\}_{i=1}^n$

•
$$P_i := \operatorname{conv}\left(\left\{e^i, e^{i+1}\right\}\right) \subseteq \Delta^{n+1}, \quad i \in [n]$$

Claim: $\operatorname{mc}_G(\mathcal{P}) = 2 \left[\log_2 n\right],$
 $n+1 \leq \operatorname{mc}(\mathcal{P}) \leq n+1+2 \left[\log_2 n\right]$

•
$$(x, y) \in Q(H) = \operatorname{conv}\left(\bigcup_{i=1}^{n} P_i \times \{h^i\}\right)$$

= $\operatorname{conv}\left(\bigcup_{i=1}^{n} \{e^i, e^{i+1}\} \times \{h^i\}\right)$

• $a \cdot x \leq b \cdot y$ $a_{i+1} \leq \min\left\{b \cdot h^i, b \cdot h^{i+1}\right\}$

 $b \in L(H) := \operatorname{aff}(H) - h^1$

Embedding Formulations

 $b \cdot \left(h^{i+1} - h^i \right) = 0$

Embedding Formulation for SOS2: Part 1

• From encodings (H) to hyperplanes:

Embedding Formulation for SOS2: Part 1

• From encodings (H) to hyperplanes:

non-bound facets = 2 × # of hyperplanes

Embedding Complexity for SOS2

- Lower Bound: $L(H) := \operatorname{aff} (H) h^1$ $\operatorname{mc}_G (\mathcal{P}) \ge 2 \times \min \# \text{ of hyperplanes}$ $\min \# \text{ of hyperplanes} \ge \dim (L(H))$ $\dim (L(H)) \ge \lceil \log_2 n \rceil$
 - Upper Bound: $H = \{0, 1\}^{\lceil \log_2 n \rceil}$ - Gray code: $\{h^i - h^{i+1}\}_{i=1}^{n-1} \equiv \{e^i\}_{i=1}^{\lceil \log_2 n \rceil}$ size_G $(Q(H)) = 2 \lceil \log_2 n \rceil$

$$n+1 \le \operatorname{mc}\left(\mathcal{P}\right) \le n+1+2\left\lceil \log_2 n\right\rceil$$

Minkowski Sums and Nonlinear MIP Formulations

Unary Encoding, Minkowski Sum and Cayley Trick

Faces of Cayley Embedding

- Two types of facets (or faces): $-P_1 \times \{0\} \equiv y_i \geq 0$
 - $-\operatorname{conv}\left(\left(F_1\times 0\right)\cup\left(F_2\times 1\right)\right)$
 - F_i proper face of P_i
 - Not all combinations of faces
 - Which ones are valid?

Valid Combinations = Common Normals

Embedding Formulations

 P_2

X₁

 \mathbf{X}_{1}

Characterization Extends to Closed Convex Sets

Small Formulations for Isotone Sets

• Studied by Hijazi et al. '12 and Bonami et al. '15 (n=1, 2):

$$-C_i = \left\{ x \in \mathbb{R}^d : l^i \le x \le u^i, \quad f_i(x) \le 0 \right\}$$

• $f_i(x)$ component-wise monotonous (i=1,2 opposite).

• Ideal Formulation $y_1 l^1 + y_2 l^2 \le x \le y_1 u^1 + y_2 u^2$ $f_J^i(x, y) \le 0$ $\forall J \subseteq [d], i \in [2]$ $y_1 + y_2 = 1$ $y_i \in \{0, 1\}$ $i \in [2]$

Embedding Formulations

Boundary Structure = Redundancy Detection

$$y_{1}l^{1} + y_{2}l^{2} \leq x \leq y_{1}u^{1} + y_{2}u^{2}$$

$$f^{i}(x, y) \leq 0 \qquad \forall i \in [2]$$

$$y_{1} + y_{2} = 1$$

$$y_{i} \geq \{0, 1\} \qquad i \in [2]$$

Boundary Structure = Redundancy Detection

"Formulations" With a Fixed Number of General Integer Variables

Alternative Encodings

 \mathbf{X}_1

X₂

 P_1

 \mathbf{X}_1

 \mathbf{X}_2

General integer (rational?) encodings:

- Points in convex position
- Recover convex sets by (possibly non-axis aligned) sections

 \mathbf{X}_2

- Example: Integers in moment curve
- For SOS2: Hyperplane characterization still works

X1 •

- 2-dim moment curve = 2(n-1) general inequalities
- More bounds soon (with Joey Huchette)

3

2

 $P_i \times A$

i=1

Summary

- Embedding Formulations = Systematic procedure for ideal non-extended formulations
 - Encoding can significantly affect size
 - Results beyond SOS2, but many open questions
- Extension to General Convex Sets
 - Can yield practical formulations
 - Not always practical (basic semi-algebraic representability)
- Using General Integer Variables
 - Smaller formulations not likely (in general)
 - General convex MIP representability (w. M. Lubin and I. Zadik):
 - The set of prime numbers is not convex MIP representable