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Nonlinear	Mixed	0-1 Integer	Formulations

• Modeling	Finite	Alternatives	=	Unions	of	Convex	Sets
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Extended and	Non-Extended	Formulations	for									

Small?	and	strong	(ideal*)

Extended Non-Extended	

Small,	but	weak?
*Integral	y in	extreme	points	of	LP	relaxation
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Outline

• Smallest	ideal	non-extended	linear formulation
– Generalization	of	Cayley	Embedding	of	Polytopes
– Hyperplane	arrangements

• Small	ideal	non-extended	nonlinear formulations
– Boundary	structure	of	Cayley	Embedding:	from	polytopes	
to	closed	convex	sets

• “Formulations”	with	a	general integer	variables	
(possibly	a	fixed	number)
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Ideal	Non-Extended	Formulations	and	
Hyperplane	Arrangements



Embedding	Formulation	=	Ideal	non-Extended
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(Cayley)	Embedding

Cayley ⌘ hi = ei, k = n
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Embedding	Formulation	=	Ideal	non-Extended
��
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��

(Cayley)	Embedding

mc (P) := minH {size (Q (H))}P := {Pi}ni=1
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Special	Ordered	Sets	=	Simplex	Faces	=	

•

•

•

mc (P) := minH {size (Q (H))} ,
size (Q (H)) := # facets

mcG (P) := minH {sizeG (Q (H))} ,
sizeG (Q (H)) := # non-bound facets

P := {Pi}ni=1
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Special	Ordered	Sets	of	Type	2	(SOS2)	=	P := {Pi}ni=1

• Pi := conv

��
ei, ei+1
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Special	Ordered	Sets	of	Type	2	(SOS2)	=	P := {Pi}ni=1

ai+1  min
�
b · hi, b · hi+1
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•

a · x  b · y

b 2 L (H) := a↵ (H)� h1

•

mcG (P) = 2 dlog2 ne,
n+ 1  mc (P) n+ 1 + 2 dlog2 ne
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Embedding	Formulation	for	SOS2:	Part	1

• From	encodings								 to	hyperplanes:

Hyperplanes spanned	by

�
bi · y = 0
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Embedding	Formulation	for	SOS2:	Part	1

• From	encodings								 to	hyperplanes:

Hyperplanes spanned	by

�
bi · y = 0
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#	non-bound	facets	=	2	× #	of	hyperplanes

(H)
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Embedding	Complexity	for	SOS2

• Lower	Bound:

• Upper	Bound:	
– Gray	code:	

sizeG (Q (H)) = 2 dlog2 ne

n+ 1  mc (P) n+ 1 + 2 dlog2 ne

L (H) := a↵ (H)� h1

mcG (P) � 2⇥min# of hyperplanes

min# of hyperplanes � dim (L (H))

dim (L (H)) � dlog2 ne

H = {0, 1}dlog2 ne
�
hi � hi+1

 n�1

i=1

⌘
�
ei
 dlog2 ne
i=1
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Minkowski Sums	and	Nonlinear	MIP	
Formulations



Unary	Encoding,	Minkowski Sum	and	Cayley Trick
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Faces	of	Cayley	Embedding

• Two	types	of	facets	(or	faces):
–

–

– Not	all	combinations	of	faces

– Which	ones	are	valid?
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Valid	Combinations	=	Common	Normals
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x2

x1

Characterization	Extends	to	Closed	Convex	Sets
x2

x1
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Small	Formulations	for	Isotone	Sets

• Studied	by	Hijazi	et	al.	‘12	and	Bonami et	al.	’15	(n=1,	2):	
–

• component-wise	monotonous	(i=1,2	opposite).

• Ideal	Formulation
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Boundary	Structure	=	Redundancy	Detection

y1l
1 + y2l

2  x  y1u
1 + y2u

2

f

i (x, y) 0 8i 2 [2]

y1 + y2 = 1

yi � {0, 1} i 2 [2]
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Boundary	Structure	=	Redundancy	Detection

Embedding	Formulations 20 /	19



“Formulations”	With	a	Fixed	Number	of	
General	Integer	Variables



Alternative	Encodings

• “Only”	use	0-1	encodings	?

• General	integer	(rational?)	encodings:
– Points	in	convex	position
– Recover	convex	sets	by	(possibly	non-axis	aligned)	sections
– Example:	Integers	in	moment	curve
– For	SOS2:	Hyperplane	characterization	still	works
• 2-dim	moment	curve	=	2(n-1)	general	inequalities
• More	bounds	soon	(with	Joey	Huchette)
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Summary

• Embedding	Formulations	=	Systematic	procedure	for	
ideal	non-extended	formulations
– Encoding	can	significantly	affect	size
– Results	beyond	SOS2,	but	many	open	questions

• Extension	to	General	Convex	Sets
– Can	yield	practical	formulations
– Not	always	practical	(basic	semi-algebraic	representability)

• Using	General	Integer	Variables
– Smaller	formulations	not	likely	(in	general)
– General	convex	MIP	representability	(w.	M.	Lubin and	I.	Zadik):
• The	set	of	prime	numbers	is	not	convex	MIP	representable
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