Discrete Geometry for Small and Strong Mixed Integer Programming Formulations

Juan Pablo Vielma

Massachusetts Institute of Technology

Seventh Cargese Workshop on Combinatorial Optimization, Institut d'Etudes Scientifiques de Cargèse, Corsica (France). October, 2016.

Nonlinear Mixed 0-1 Integer Formulations

- Modeling Finite Alternatives = Unions of Convex Sets

$$
x \in \bigcup_{i=1}^{n} C_{i} \subseteq \mathbb{R}^{d}
$$

Extended and Non-Extended Formulations for $\bigcup_{i=1}^{n} C_{i}$
$C_{i}=\left\{x \in \mathbb{R}^{d}: A^{i} x \leq b^{i}\right\}$

Extended

$$
A^{i} x^{i} \leq b^{i} y_{i} \quad \forall i \in[n]
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} x^{i}=x \\
& \sum_{i=1}^{n} y_{i}=1
\end{aligned}
$$

$$
y \in\{0,1\}^{n}
$$

$$
x, x^{i} \in \mathbb{R}^{d}
$$

$\forall i \in[n]$

Non-Extended

$$
\begin{array}{rlrl}
A^{i} x-b^{i} & \leq M_{i}\left(1-y_{i}\right) & & \forall i \in[n] \\
\sum_{i=1}^{n} y_{i} & =1 & & \\
y & \in\{0,1\}^{n} & & \\
x & \in \mathbb{R}^{d} & \forall i \in[n]
\end{array}
$$

Small? and strong (ideal*)
*Integral y in extreme points of LP relaxation

- Smallest ideal non-extended linear formulation
- Generalization of Cayley Embedding of Polytopes
- Hyperplane arrangements
- Small ideal non-extended nonlinear formulations
- Boundary structure of Cayley Embedding: from polytopes to closed convex sets
- "Formulations" with a general integer variables (possibly a fixed number)

Ideal Non-Extended Formulations and Hyperplane Arrangements

Embedding Formulation = Ideal non-Extended

$$
Q(H):=\operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i} \times\left\{h^{i}\right\}\right)
$$

$$
(x, y) \in Q \cap\left(\mathbb{R}^{d} \times \mathbb{Z}^{k}\right) \quad \Leftrightarrow \quad y=h^{i} \wedge x \in P_{i}
$$

$$
\operatorname{ext}(Q) \subseteq \mathbb{R}^{d} \times \mathbb{Z}^{k} \quad H:=\left\{h^{i}\right\}_{i=1}^{n} \subseteq\{0,1\}^{k}, \quad h^{i} \neq h^{j}
$$

$$
\text { Cayley } \equiv h^{i}=e^{i}, \quad k=n
$$

Embedding Formulation = Ideal non-Extended

$$
(x, y) \in Q \cap\left(\mathbb{R}^{d} \times \mathbb{Z}^{k}\right) \quad \Leftrightarrow \quad y=h^{i} \wedge x \in P_{i}
$$

$$
\operatorname{ext}(Q) \subseteq \mathbb{R}^{d} \times \mathbb{Z}^{k} \quad H:=\left\{h^{i}\right\}_{i=1}^{n} \subseteq\{0,1\}^{k}, \quad h^{i} \neq h^{j}
$$

$$
\mathcal{P}:=\left\{P_{i}\right\}_{i=1}^{n} \longrightarrow \operatorname{mc}(\mathcal{P}):=\min _{H}\{\operatorname{size}(Q(H))\}
$$

Special Ordered Sets $=$ Simplex Faces $=\mathcal{P}:=\left\{P_{i}\right\}_{i=1}^{n}$

- $\Delta^{d+1}:=\left\{x \in \mathbb{R}_{+}^{d+1}: \sum_{i=1}^{d+1} x_{i}=1\right\}=\operatorname{conv}\left(\left\{e^{i}\right\}_{i=1}^{d+1}\right)$

$$
P_{i}:=\operatorname{conv}\left(\left\{e^{j}\right\}_{j \in T_{i}}\right)=\left\{x \in \Delta^{d+1}: \sum_{j \notin T_{i}} x_{i} \leq 0\right\}
$$

$$
T_{i} \subseteq\{1, \ldots, d+1\}
$$

$$
\operatorname{mc}(\mathcal{P}):=\min _{H}\{\operatorname{size}(Q(H))\}
$$

$\operatorname{size}(Q(H)):=\#$ facets

$$
\operatorname{mc}_{G}(\mathcal{P}):=\min _{H}\left\{\operatorname{size}_{G}(Q(H))\right\},
$$

$\operatorname{size}_{G}(Q(H)):=\#$ non-bound facets

Special Ordered Sets of Type $2($ SOS2 $)=\mathcal{P}:=\left\{P_{i}\right\}_{i=1}^{n}$

- $P_{i}:=\operatorname{conv}\left(\left\{e^{i}, e^{i+1}\right\}\right) \subseteq \Delta^{n+1}, \quad i \in[n]$

Embedding Formulations

Special Ordered Sets of Type $2($ SOS 2 $)=\mathcal{P}:=\left\{P_{i}\right\}_{i=1}^{n}$

- $P_{i}:=\operatorname{conv}\left(\left\{e^{i}, e^{i+1}\right\}\right) \subseteq \Delta^{n+1}, \quad i \in[n]$

Claim:

$$
\operatorname{mc}_{G}(\mathcal{P})=2\left\lceil\log _{2} n\right\rceil
$$

$$
n+1 \leq \operatorname{mc}(\mathcal{P}) \leq n+1+2\left\lceil\log _{2} n\right\rceil
$$

- $(x, y) \in Q(H)=\operatorname{conv}\left(\bigcup_{i=1}^{n} P_{i} \times\left\{h^{i}\right\}\right)$

$$
=\operatorname{conv}\left(\bigcup_{i=1}^{n}\left\{e^{i}, e^{i+1}\right\} \times\left\{h^{i}\right\}\right)
$$

- $a \cdot x \leq b \cdot y$ $a_{i+1} \leq \min \left\{b \cdot h^{i}, b \cdot h^{i+1}\right\}$
$b \in L(H):=\operatorname{aff}(H)-h^{1}$

$$
b \cdot(\underbrace{h^{i+1}-h^{i}})=0
$$

Embedding Formulation for SOS2: Part 1

- From encodings (H) to hyperplanes:

$$
\begin{gathered}
\left\{h^{i}\right\}_{i=1}^{n} \\
c^{i}=h^{\mid=1}-h^{i} \\
\left\{c^{i}\right\}_{\mid=1}^{n-1}
\end{gathered}
$$

Hyperplanes spanned by

$$
\left\{\begin{array}{c}
\downarrow \\
\left\{b^{i} \cdot y=0\right\}_{j=1}^{L}
\end{array}\right.
$$

$$
h^{1}=\binom{1}{1}, h^{2}=\binom{0}{0}, h^{3}=\binom{1}{0}
$$

Embedding Formulation for SOS2: Part 1

- From encodings (H) to hyperplanes:
$\left\{h^{i}\right\}_{i=1}^{n}$
$h^{1}=\binom{1}{1}, h^{2}=\binom{0}{0}, h^{3}=\binom{1}{0}$
$c^{i}=h^{i+1}-h^{i}$
\# non-bound facets $=2 \times$ \# of hyperplanes
($) ~, i=1$
Hyperplanes spanned by

$$
\begin{gathered}
\downarrow \\
\left\{b^{i} \cdot y=0\right\}_{j=1}^{L}
\end{gathered}
$$

Embedding Complexity for SOS2

- Lower Bound: $L(H):=\operatorname{aff}(H)-h^{1}$
$\operatorname{mc}_{G}(\mathcal{P}) \geq 2 \times \min \#$ of hyperplanes $\min \#$ of hyperplanes $\geq \operatorname{dim}(L(H))$ $\operatorname{dim}(L(H)) \geq\left\lceil\log _{2} n\right\rceil$
- Upper Bound: $H=\{0,1\}^{\left\lceil\log _{2} n\right\rceil}$
- Gray code: $\left\{h^{i}-h^{i+1}\right\}_{i=1}^{n-1} \equiv\left\{e^{i}\right\}_{i=1}^{\left\lceil\log _{2} n\right\rceil}$

$$
\begin{gathered}
\operatorname{size}_{G}(Q(H))=2\left\lceil\log _{2} n\right\rceil \\
n+1 \leq \operatorname{mc}(\mathcal{P}) \leq n+1+2\left\lceil\log _{2} n\right\rceil
\end{gathered}
$$

Minkowski Sums and Nonlinear MIP Formulations

Unary Encoding, Minkowski Sum and Cayley Trick

$$
\begin{aligned}
& Q \cap\left(\mathbb{R}^{2} \times\{0.5\}\right) \equiv P_{1}+P_{2}= \\
& H=\left\{e^{i}\right\}_{i=1}^{n}
\end{aligned}
$$

$Q(H) \cap\left(\mathbb{R}^{d} \times\left\{\frac{1}{n} \sum_{i=1}^{n} \mathbf{e}^{i}\right\}\right) \equiv \sum_{i=1}^{n} P_{i}$

Faces of Cayley Embedding

- Two types of facets (or faces):
- $P_{1} \times\{0\} \equiv y_{i} \geq 0$
$-\operatorname{conv}\left(\left(F_{1} \times 0\right) \cup\left(F_{2} \times 1\right)\right)$
F_{i} proper face of P_{i}

- Not all combinations of faces
- Which ones are valid?

Valid Combinations $=$ Common Normals

Characterization Extends to Closed Convex Sets

Embedding Formulations

Small Formulations for Isotone Sets

- Studied by Hijazi et al. '12 and Bonami et al. ' $15(n=1,2)$:

$$
-C_{i}=\left\{x \in \mathbb{R}^{d}: l^{i} \leq x \leq u^{i}, \quad f_{i}(x) \leq 0\right\}
$$

- $f_{i}(x)$ component-wise monotonous ($\mathrm{i}=1,2$ opposite).

- Ideal Formulation

$$
\begin{array}{rlrl}
y_{1} l^{1}+y_{2} l^{2} \leq x & \leq y_{1} u^{1}+y_{2} u^{2} & & \\
f_{J}^{i}(x, y) & \leq 0 & \forall J \subseteq \\
y_{1}+y_{2} & =1 & & \\
y_{i} & \in\{0,1\} & & i \in[2]
\end{array}
$$

Boundary Structure = Redundancy Detection

$$
y_{1} l^{1}+y_{2} l^{2} \leq x \leq y_{1} u^{1}+y_{2} u^{2}
$$

$$
f^{i}(x, y) \leq 0
$$

$$
\forall i \in[2]
$$

$$
y_{1}+y_{2}=1
$$

$$
y_{i} \geq\{0,1\}
$$

$$
i \in[2]
$$

Boundary Structure = Redundancy Detection

Embedding Formulations

"Formulations" With a Fixed Number of General Integer Variables

Alternative Encodings

- "Only" use 0-1 encodings ?

P_{2}

- General integer (rational?) encodings:
- Points in convex position
- Recover convex sets by (possibly non-axis aligned) sections
- Example: Integers in moment curve
- For SOS2: Hyperplane characterization still works
- 2-dim moment curve $=2(n-1)$ general inequalities
- More bounds soon (with Joey Huchette)

Summary

- Embedding Formulations = Systematic procedure for ideal non-extended formulations
- Encoding can significantly affect size
- Results beyond SOS2, but many open questions
- Extension to General Convex Sets
- Can yield practical formulations
- Not always practical (basic semi-algebraic representability)
- Using General Integer Variables
- Smaller formulations not likely (in general)
- General convex MIP representability (w. M. Lubin and I. Zadik):
- The set of prime numbers is not convex MIP representable

