Ellipsoidal Methods for Adaptive Choice-based Conjoint Analysis (CBCA)

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Denis Saure

Operations Management Seminar, Rotman School of Management, Toronto, Canada. December, 2016.

Motivation: (Custom) Product Recommendations

Feature	SX530	RX100	
Zoom	50x	3.6x	
Prize	\$249.99	\$399.99	
Weight	15.68 ounces	7.5 ounces	
Prefer			

Feature	TG-4	G9
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Weight	7.36 lb	7.5 lb
Prefer		

Feature	TG-4	Galaxy 2
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Viewfinder	Electronic	Optical
Prefer		

Towards CBCA-Based Recommendations

- Individual preference estimates with few questions
- Adaptive Questions:
 - Fast question selection
 - Pick **next** question to reduce uncertainty
 - Quantify estimate variance
- Favorable properties for future:
 - Intuitive geometric model (e.g. Robust Opt.)
 - Parametric model

Choice-based Conjoint Analysis

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
I would buy toy		
Product Profile	x^1	x^2

MNL Preference Model

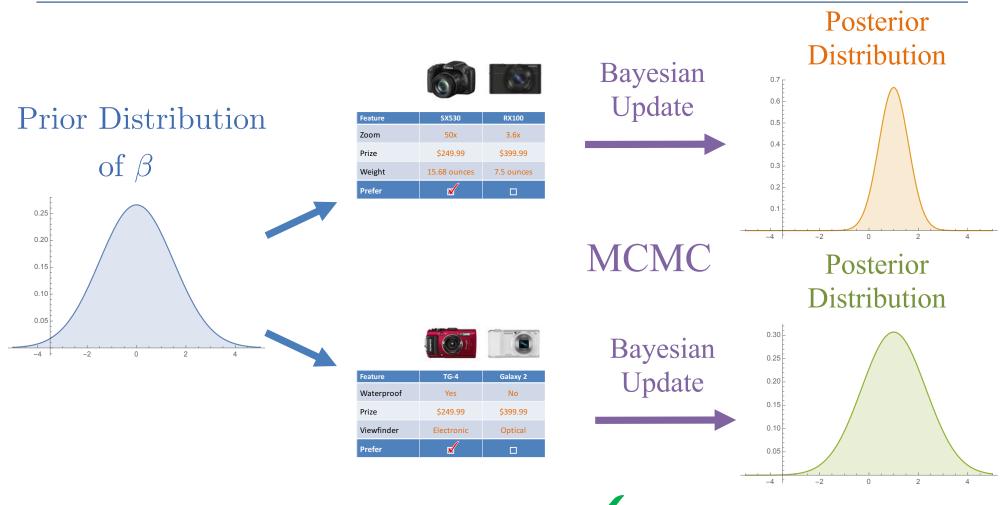
• Utilities for 2 products, d features

$$U_{1} = \beta \cdot x^{1} + \epsilon_{1} = \sum_{i=1}^{d} \beta_{i} x_{i}^{1} + \epsilon_{1}$$
$$U_{2} = \beta \cdot x^{2} + \epsilon_{2} = \sum_{i=1}^{d} \beta_{i} x_{i}^{2} + \epsilon_{2}$$
part-worths \uparrow for a product profile in the product profile in the product of the product profile is the product of the product profile is the product profile in the product profile is the product product profile is the product profile is the product profile

- Utility maximizing customer: $x^1 \succeq x^2 \Leftrightarrow U_1 " \ge " U_2$
- Noise can result in response error:

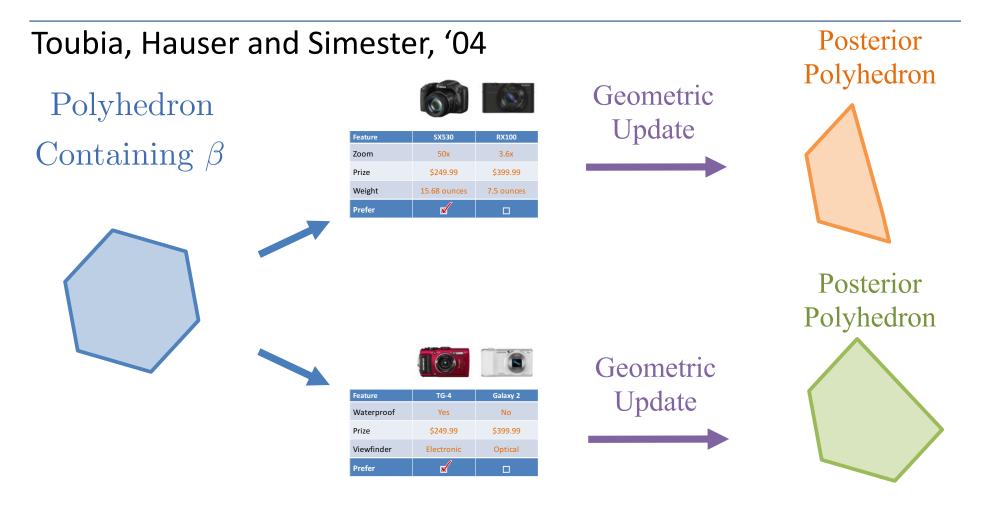
$$\mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right) = \frac{e^{\beta \cdot x^{1}}}{e^{\beta \cdot x^{1}} + e^{\beta \cdot x^{2}}}$$

Next Question To Reduce "Variance": Bayesian



- Update uses MNL response error
- Question Selection (even knowing answer): Enumeration X

Next Question To Reduce "Variance": Polyhedral



- Update ignores response error X
- Question Selection: (Multi-Obj.) Discrete Optimization

Outline

- Objective: Combine Bayesian and polyhedral methods into intuitive geometric approach
- 1. Review of geometry of polyhedral method
- 2. Incorporating response error = ellipsoids
- 3. MIP based near-optimal question selection to reduce variance measure (D-efficiency)
- 4. Optimal one-step look-ahead moment-matching approximate Bayesian approach (OOLMMABA?)

Ellipsoidal Method

Polyhedral Method

Preference Model and Geometric Interpretation

• Utilities for 2 products, d features, logit model

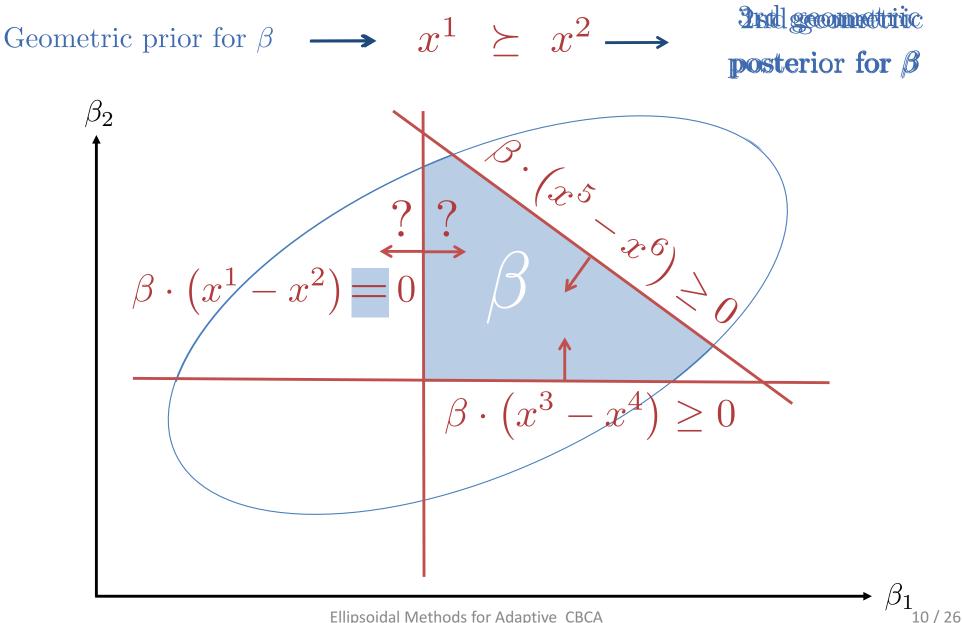
$$U_{1} = \beta \cdot x^{1} + \underbrace{\mathfrak{S}_{1}}_{i=1} = \sum_{i=1}^{d} \beta_{i} x_{i}^{1} + \underbrace{\mathfrak{S}_{1}}_{i=1}$$
$$U_{2} = \beta \cdot x^{2} + \underbrace{\mathfrak{S}_{2}}_{i=1} = \sum_{i=1}^{d} \beta_{i} x_{i}^{2} + \underbrace{\mathfrak{S}_{2}}_{i=1}$$
part-worths $\widehat{\mathfrak{S}_{1}}$ noise (gumbel)

- Utility maximizing customer
 - Geometric interpretation of preference for product 1 without error

$$x^1 \succeq x^2 \Leftrightarrow U_1 \ge U_2$$

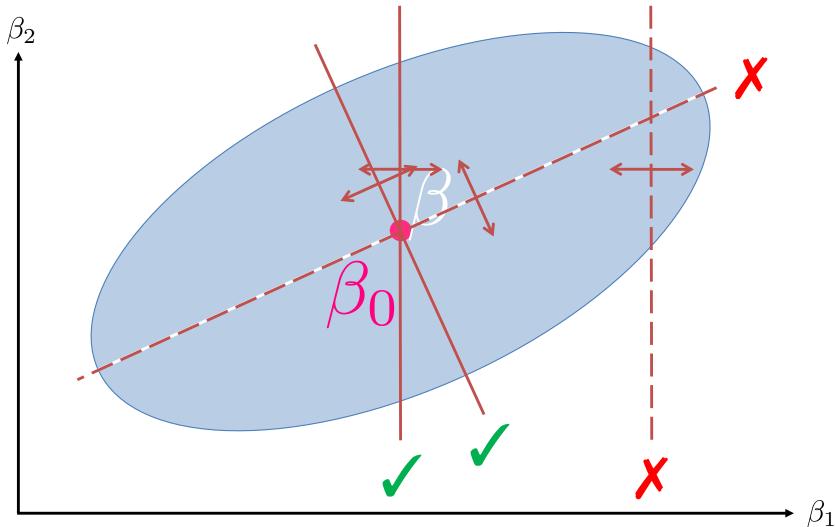
$$\beta_{2}$$

Polyhedral Method: Ask Question and Update



Polyhedral: Estimation and Question Selection

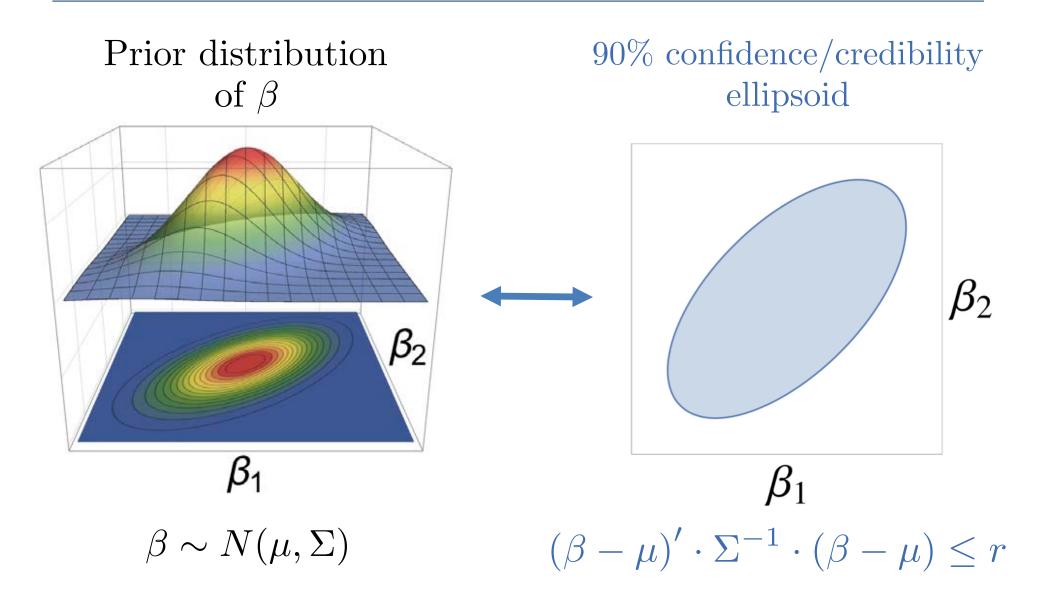
Good estimation? for β ? \mathbb{C} e **E** be determine the second se



11/26

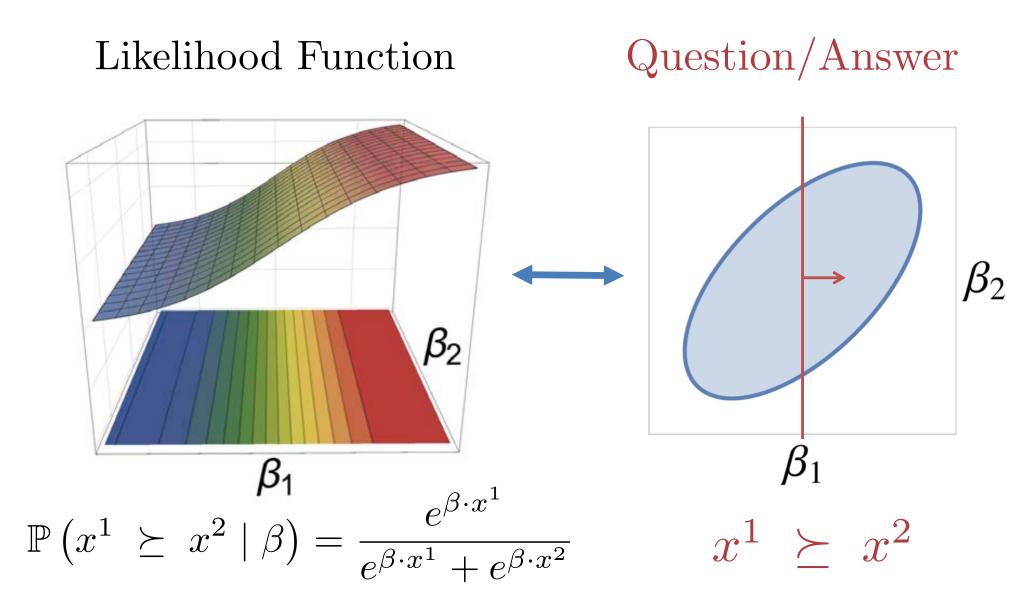
Incorporating Response Error

Distributions and Credibility Ellipsoids

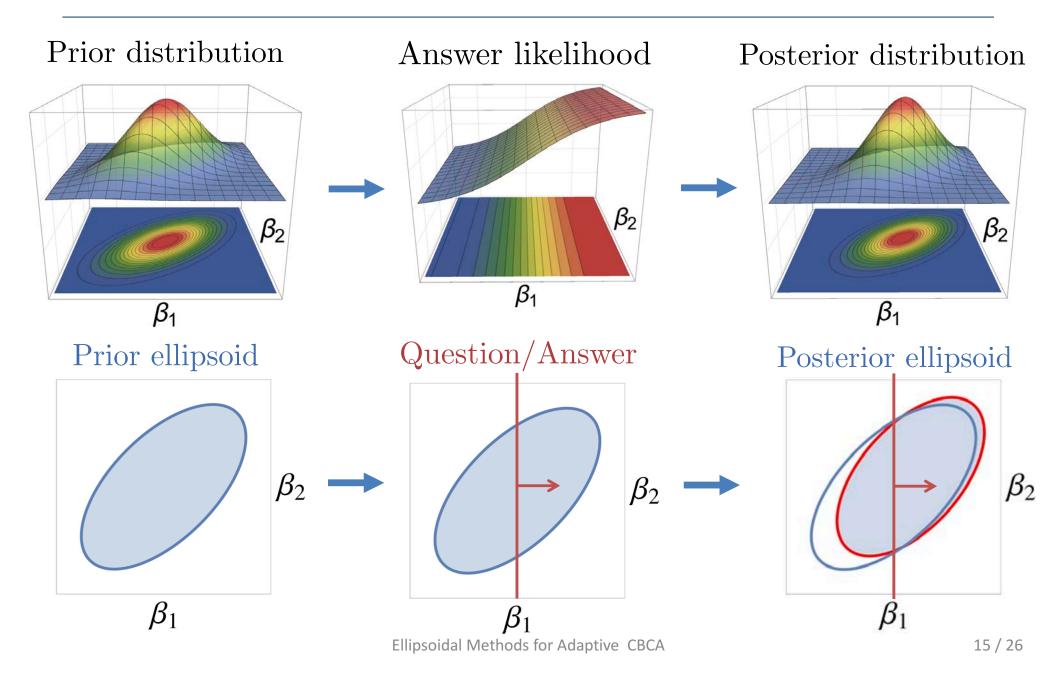


Ellipsoidal Methods for Adaptive CBCA

Answers with Error: Logit Probabilities



Bayesian Update and Geometric Updates



Computational Comparison of Updates

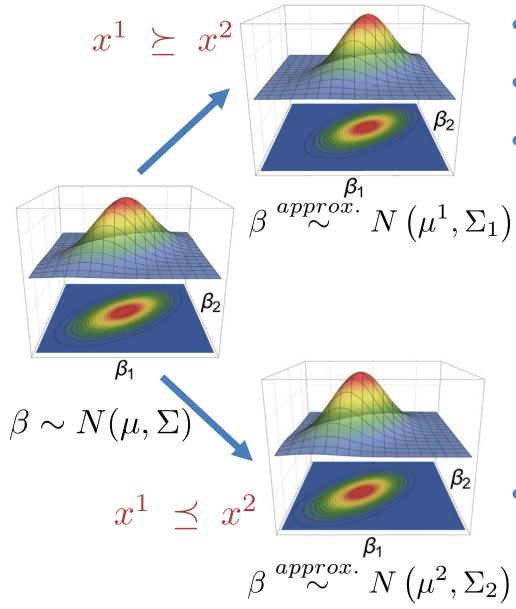
- Gaussian prior and 90% credibility ellipsoid, 100 inst.
 - 12 features, 2 profiles and 5 questions
 - Sample 1 "true" β and simulate MNL responses with it

	Polyhedral	Ellipsoidal
Feasible β	0.53	0.93
Distance (scaled)	0.92	0.85
Gaussian Volume	0.03	0.40



Question Selection: Optimizing D-Efficiency

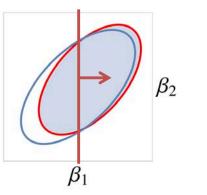
D-Efficiency and Posterior Covariance Matrix

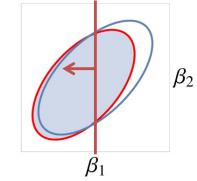


• D-Efficiency:

•
$$f(x^1, x^2) := \mathbb{E}_{\beta, x^1 \preceq /\succeq x^2} \left(\det(\Sigma_i)^{1/p} \right)$$

 p = 2 proportional to expected volume of posterior ellipsoid





• Evaluating = multi-dim integration

Ellipsoidal Methods for Adaptive CBCA

Back to Question Selection: Property Trade-off

$$(\beta - \mu)' \cdot \Sigma^{-1} \cdot (\beta - \mu) \le r$$

• Choice balance:

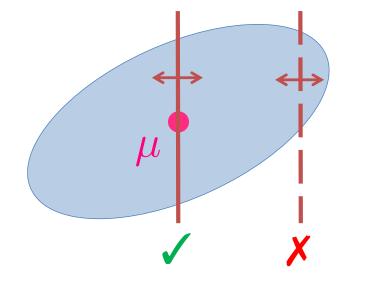
– Minimize distance to center

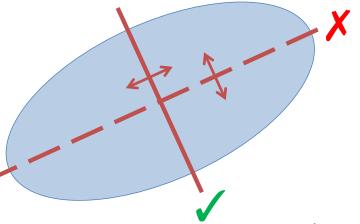
$$\boldsymbol{\mu} \cdot \left(x^1 - x^2 \right)$$

Postchoice symmetry:

- Maximize variance of question

$$\left(x^1 - x^2\right)' \cdot \sum \cdot \left(x^1 - x^2\right)$$





D-efficiency Simplification for CBCA

• D-efficiency = Non-convex function f(d, v) of distance: $d := \mu \cdot (x^1 - x^2)$ variance: $v := (x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$ Can evaluate f(d, v)8 with 1-dim integral 🙂 10 1.0 0.9 f(d,v)0.8 -5 0 d 5

Optimization Model

min
$$f(d, v)$$
 X

s.t.

$$\mu \cdot (x^{1} - x^{2}) = d \qquad \checkmark$$
$$(x^{1} - x^{2})' \cdot \sum \cdot (x^{1} - x^{2}) = v \qquad \bigstar$$
$$A^{1}x^{1} + A^{2}x^{2} \leq b \qquad \checkmark$$
$$\text{linearize } x_{i}^{k} \cdot x_{j}^{l} \qquad \qquad x^{1} \neq x^{2} \qquad \bigstar$$
$$x^{1}, x^{2} \in \{0, 1\}^{n}$$

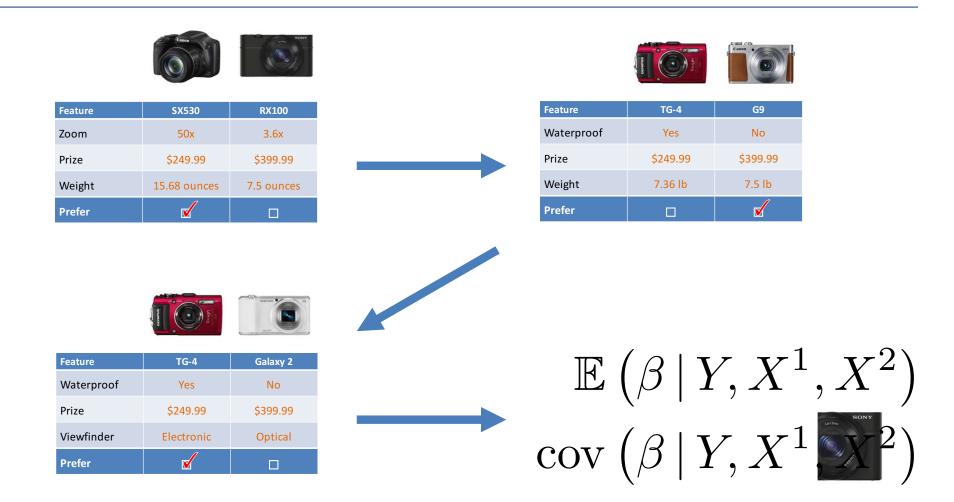
Ellipsoidal Methods for Adaptive CBCA

Piecewise Linear Approximation

• D-efficiency = Non-convex function f(d, v)distance: $d := \mu \cdot (x^1 - x^2)$ variance: $v := (x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$ Can evaluate f(d, v)8 with 1-dim integral 🙂 10 0.9 **Piecewise Linear** g(d,v)Interpolation 0.8 **MIP** formulation -5 5

Putting Everything Together: Ellipsoidal Method

MIP-based Adaptive Questionnaires

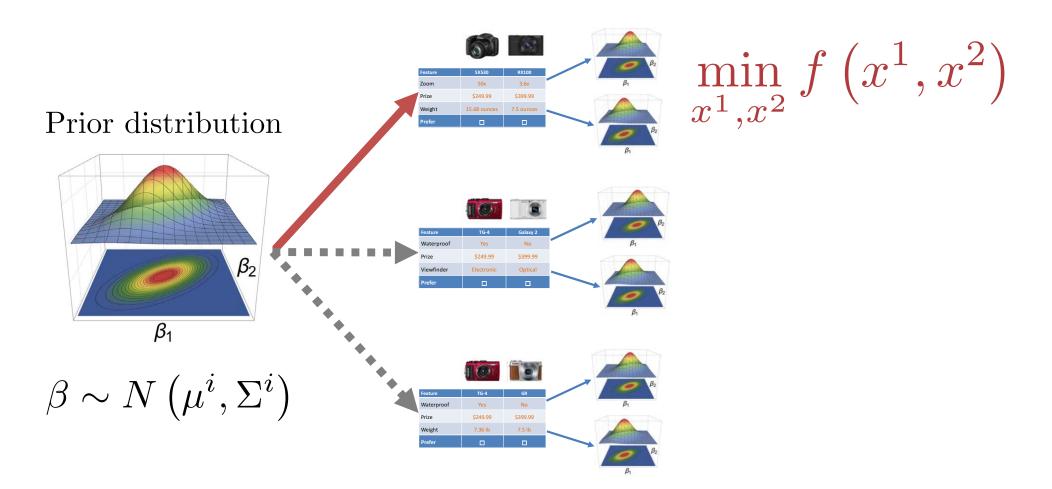


• Optimal one-step look-ahead moment-matching approximate Bayesian approach.

Ellipsoidal Methods for Adaptive CBCA

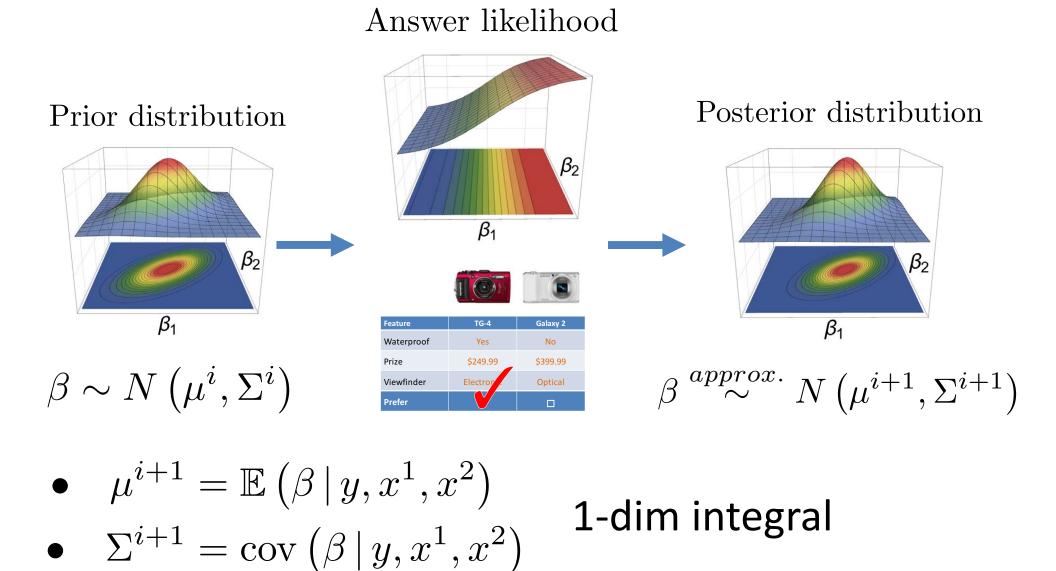
Weight

Optimal One-Step Look-Ahead



• Solve with MIP formulation

Moment-Matching Approximate Bayesian Update

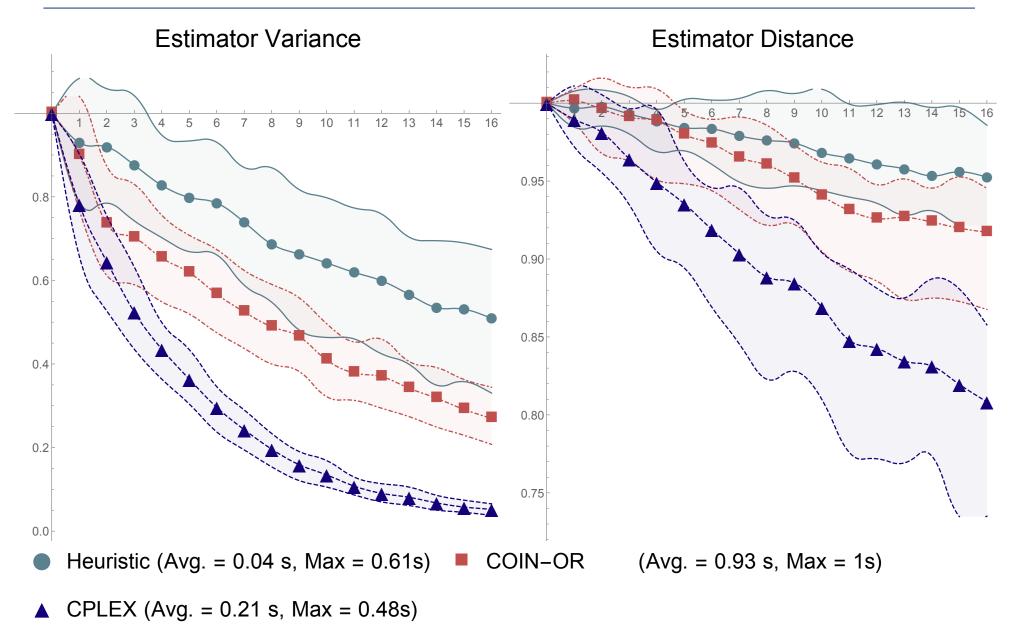


Ellipsoidal Methods for Adaptive CBCA

Computational Experiments

- 16 questions, 2 options, 12 features
- Simulate MNL responses with known β^*
- Question Selection
 - MIP-based using CPLEX and open source COIN-OR solver
 - Knapsack-based geometric Heuristic by Toubia et al.
- Time limits of 1 s
- Metrics:
 - Estimator variance = $\left(\det \operatorname{cov}\left(\beta \mid Y, X^{1}, X^{2}\right)\right)^{1/2}$
 - Estimator distance = $\left\| \mathbb{E} \left(\beta \,|\, Y, X^1, X^2 \right) \beta^* \right\|_2$
 - Computed for true posterior with MCMC

Results for 12 Features, 1 s time limit



Ellipsoidal Methods for Adaptive CBCA

Summary

- Messages:
 - Always choose Chewbacca!
 - Polyhedral \rightarrow Geometric \approx Bayesian

- Question selection and update with optimization and limited sampling (1-dim integrals)
- Point estimation and credibility region
- Improvements in point estimation, reduction of uncertainty and precision of credibility region
- Also works for more profiles, attribute levels, etc.
- Future:
 - Combination and comparison with fully Bayesian
 - Combine with polyhedral updates
 - Computational improvements
 - Field experiments