Ellipsoidal Methods for Adaptive
Choice-based Conjoint Analysis (CBCA)

Juan Pablo Vielma

Massachusetts Institute of Technology

Joint work with Denis Saure

Operations Management Seminar,
Rotman School of Management,
Toronto, Canada. December, 2016.



Motivation: (Custom) Product Recommendations
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Towards CBCA-Based Recommendations

* Individual preference estimates with few questions

* Adaptive Questions:
— Fast question selection

— Pick next question to
reduce uncertainty

— Quantify estimate
variance

* Favorable properties for m
future: =
— Intuitive geometric
model (e.g. Robust Opt.)
— Parametric model
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Choice-based Conjoint Analysis
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MNL Preference Model

» Utilities for 2 products, d features
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» Utility maximizing customer: z1 = z° < U; “>"U,

* Noise can result in response error:
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Next Question To Reduce “Variance”: Bayesian

Prior Distribution
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* Update uses MNL response error \/

Posterior
Distribution

Posterior
Distribution

* Question Selection (even knowing answer): Enumeration X
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Next Question To Reduce “Variance”: Polyhedral

Toubia, Hauser and Simester, ‘04 Posterior
, Polyhedron
Polyhedron @B Geometic
o E———— o Update
Containing [ R
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Polyhedron
\ i = Geometric
e Update
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 Update ignores response error X
 Question Selection: (Multi-Obj.) Discrete Optimization
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Outline

* Objective: Combine Bayesian and polyhedral
methods into intuitive geometric approach

Review of geometry of polyhedral method
2. Incorporating response error = ellipsoids

MIP based near-optimal question selection to
reduce variance measure (D-efficiency)

4. Optimal one-step look-ahead moment-matching

approximate Bayesian approach (66HMMABAD)
Ellipsoidal Method
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Polyhedral Method



Preference Model and Geometric Interpretation

» Utilities for 2 products, d features, logit model

0= B-a' 1@=3_,_ Bzl 4@
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part-worths J T

product profile noise (gumbel)

e Utility maximizing customer

— Geometric interpretation of preference
for product 1 without error
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Polyhedral Method: Ask Question and Update

" 1
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Polyhedral: Estimation and Question Selection

Good &3tiestatar? for 37
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Incorporating
Response Error



Distributions and Credibility Ellipsoids

Prior distribution 90% confidence/credibility
of 5 ellipsoid

pi

(B—p) S (B—p) <7
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Answers with Error: Logit Probabilities

Likelihood Function Question/Answer
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Bayesian Update and Geometric Updates

Prior distribution Answer likelihood Posterior distribution

B
Prior ellipsoid Question/Answer Posterior ellipsoid
By = e By =P B
:8 1 ,3 1 ,B 1

Ellipsoidal Methods for Adaptive CBCA 15/ 26



Computational Comparison of Updates

e Gaussian prior and 90% credibility ellipsoid, 100 inst.
— 12 features, 2 profiles and 5 questions
— Sample 1 “true” f and simulate MNL responses with it

Polyhedral | Ellipsoidal
Feasible 3 0.53 0.93
0.92

Distance (scaled) 0.85
Gaussian Volume| 0.03 0.40
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Question Selection:
Optimizing D-Efficiency



D-Efficiency and Posterior Covariance Matrix

e D-Efficiency:

o f(aha?) =B s g0 (det(S)17)

e p=2 proportional to
expected volume of
posterior ellipsoid

Xl

approx.
Y

N (1!, %)

, ‘ B B
| B2 . : _ T
2l < g2 - !Evaluatlhg = multi-dim
B integration

6 apzzco:c. N (,u2, 22)
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Back to Question Selection: Property Trade-off

(B—p) -2 (B—p) <r

e Choice balance: o
— Minimize distance to center ®
1 2 2!
o (2t~ ?) :
v X

e Postchoice symmetry:

— Maximize variance of question

(xl - xz)’ _ Z . (le - $2)
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D-efficiency Simplification for CBCA

* D-efficiency = Non-convex function f(d,v) of
distance: d:= u - (:131 — :1:2)

. /
variance: v = (a:l — 332) : Z : (:zzl — azQ)

Can evaluate f(d, v)
with 1-dim integral ©@
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Optimization Model

min f(d, ) X
S.1.

ko vt £zt X
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Piecewise Linear Approximation

 D-efficiency = Non-convex function f(d, v0f
distance: d:= u - (331 — $2)

o /
variance: v = (xl — x2) : Z : (:z:l — :1:2)

Can evaluate f(d,v)
with 1-dim integral ©@

Piecewise Linear
Interpolation

MIP formulation
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Putting Everything
Together:
Ellipsoidal Method



MIP-based Adaptive Questionnaires
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* Optimal one-step look-ahead moment-matching
approximate Bayesian approach.
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Optimal One-Step Look-Ahead

min f (1131, 1132)

) ) ) ) 1 2
Prior distribution L= ,I

e Solve with MIP formulation
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Moment-Matching Approximate Bayesian Update

Answer likelihood

Prior distribution Posterior distribution

3 approT. Ny (Iu7;+17 Zz‘+1)

o T =E(B|y,a' z?)
COV (5\y,x1,x2)
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Computational Experiments

16 questions, 2 options, 12 features
Simulate MNL responses with known 3*

Question Selection
— MIP-based using CPLEX and open source COIN-OR solver
— Knapsack-based geometric Heuristic by Toubia et al.

Time limitsof 1 s

Metrics:

— Estimator variance = (det cov (3]Y, X", XZ))M2
— Estimator distance = ||E (8]Y, X', X?) — 5|,

— Computed for true posterior with MCMC

Ellipsoidal Methods for Adaptive CBCA

27 /27



Results for 12 Features, 1 s time limit

Estimator Variance

0.0r

® Heuristic (Avg. = 0.04 s, Max = 0.61s)

A CPLEX (Avg. = 0.21 s, Max = 0.48s)
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(Avg. = 0.93 s, Max = 1s)
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Summary

* Messages:
— Always choose Chewbacca!

— Polyhedral = Geometric = Bayesian

* Question selection and update with
optimization and limited sampling (1-dim mtegrals)

* Point estimation and credibility region

* Improvements in point estimation, reduction of uncertainty and
precision of credibility region

* Also works for more profiles, attribute levels, etc.

e Future:

— Combination and comparison with fully Bayesian
— Combine with polyhedral updates

— Computational improvements

— Field experiments
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