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(Custom) Product Recommendations via CBCA
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(Custom) Product Recommendations via CBCA

* Individual preference estimates with few questions (5):
— Need very accurate question = adaptive
— Still need confidence measure on estimates

* Minimize uncertainty / variance good, but secondary:

— Objective is good recommendation (M-Efficiency)

* Final use of preference s risk-averse optimization problem

— Need intuitive geometric model to combine learning
with optimization
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Towards Optimal Product Recommendation

* Find enough information about preferences to recommend

* How do | pick the next question to obtain the largest
reduction of uncertainty or “variance” on preferences
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Choice-based Conjoint Analysis
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MNL Preference Model

e Utilities for 2 products, d features
d
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Next Question To Reduce “Variance”: Bayesian

Posterior
. Distribution
. [ Bayesian o
Prior Distribution T Update -
MC MC Posterior
Distribution
Bayesian
Update
ﬁ

 Update uses MNL response error /
Question Selection: Enumeration X
* Recommendation: Risk-averse Stochastic Optimization X
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Next Question To Reduce “Variance”: Polyhedral

Toubia, Hauser and Simester, ‘04 Posterior
. Polyhedron
Polyhedron . - Geometric
. Update
Containing
Posterior
Polyhedron
Geometric
Update
ﬁ

* Update ignores response error X
Question Selection: (Multi-Obj.) Discrete Optimization v
e Recommendation: Robust Optimization ¢/
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“Improving” the 2004 Polyhedral Method

 More “re-interpreting” ideas from Toubia, Hauser and
Simester, ‘04 (and Toubia, Hauser and Garcia '07)

e Our “improvements”:

1. Incorporateresponse error
* Adaptations by Toubia, Hauser and Garcia 07 and Bertsimas and
O’Hair ‘13
— Not MNL model

— Loose simple geometric interpretation = complicates update,
qguestion selection and recommendation problem

* Replace polyhedra with ellipsoids = have your cake and eat it too!

2. “Improve” question selection

e Optimize widely used variance metric = D-efficiency
e Just the right balance from guidelines from Toubia et al. 2004
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Polyhedral Method



Preference Model and Geometric Interpretation

» Utilities for 2 products, d features, logit model
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Polyhedral Method: Ask Question and Update

S M1
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Polyhedral: Estimation and Question Selection
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Polyhedral Method: Non-ellipsoidal Sets

Idea from Nonlinear Programming (NLP):
Approximate ellipsoid through analytic center.

- M1
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Incorporating
Response Error



First Improvement: Ellipsoidal Updates

* Polyhedral updates
— Assumes no errors
— Region complexity increases

 NLP again: ellipsoid metho

— Use minimum volume
ellipsoid = simple formula ...

— or use corrected ellipsoid =
simple modification to
formula
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Distributions and Credibility Ellipsoids

Prior distribution 90% confidence/credibility
of 5 ellipsoid

pi

(B—p) - (B—p)<r
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Answers with Error: Logit Probabilities

Likelihood Function Question/Answer
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Bayesian Update and Geometric Updates

Prior distribution Answer likelihood Posterior distribution

Prior ellipsoid Question / Answer Posterior ellipsoid
By = — By = B>
,8 1 ,8 1 ,8 1
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Geometric Comparison of Updates

Min. Volume Corrected Bayesian for
Ellipsoid Ellipsoid Normal Approx.
B2 —> B2 B2
B | B | B
Simple Formula Simple Formula

1-dimintegral @
10* - 107 samples
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Computational Comparison of Updates

e Gaussian prior and 90% credibility ellipsoid, 100 inst.

— 12 features, 2 profilesand 5 questions

Polyhedral | Ellipsoidal | Corrected | 1-step Bayes
EII|p50|daI

Feasible ﬁ

Distance (scaled) | 0.92 0.86 0.88 0.85
Gaussian Volume| 0.03 0.85 0.82 0.40
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Improving Question
Selection:
Optimizing D-Efficiency



D-Efficiency and Posterior Covariance Matrix

e D-Efficiency:
o f(z",2%) =Egn </y a2 (det(E )1/p)
e p=2 proportional to

g . expected volume of
PR N (ut,x,) posterior ellipsoid

& @

 Even evaluatmg expected
D-Efficiency for a question
requires multidimensional
8 " N (u?,%,) integration
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Back to Question Selection: Property Trade-off

(B—p) X (B—p) <

* Choice balance:
4 b
— Minimize distance to center ®
1 2 K
po (&' — o) :
v X

* Postchoice symmetry:

— Maximize variance of question

(xl B 332)/ . 2 . (a:*l - x2)
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D-efficiency: Balance Question Trade-off

* D-efficiency = Non-convexfunction f(d,v) of
distance: d:= - (:1:1 — x2)

. /
variance: v = (xl — xQ) : Z . (ml — x2)

Can evaluate f(d, v)
with 1-dim integral ©®

Piecewise Linear
Interpolation

Optimal question
selection = MIP
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Computational Results for Question Selection

* Gaussian prior and 90% credibility ellipsoid, 100 inst.
— 12 features, 2 profiles, 5 questions, 1-step Bayes

Feasible 0.90 0.91
Distance (scaled) 0.97 0.85
D-Efficiency 2.2E+07 7.00E+06
Gaussian Volume 0.74 0.40

» 1 step for random covariance/ellipsoid

D-Efficiency 0.016 0.015
variance 110 83
distance 8.6 1.2

Area R1/ R2 32% / 68% 47% [/ 53%
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Summary

* Messages:

— Always choose Chewbaccal!

— Polyhedral - Geometric = Bayesian

e Question selection and update with
optimization and limited sampling (1-dim integrals)
* Point estimation and credibility region

* Improvements in point estimation, reduction of uncertainty and
precision of credibility region

* Also works for more profiles and attribute levels

* Future:

— Combination and comparison with fully Bayesian
— Combine with polyhedral updates

— Computational improvements

— Field experiments
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