Ellipsoidal Methods for Adaptive Choice-based Conjoint Analysis

Juan Pablo Vielma

Massachusetts Institute of Technology

March, 2016.

Joint work Denis Sauré

(Custom) Product Recommendations via CBCA

Feature	SX530	RX100
Zoom	50x	3.6x
Prize	\$249.99	\$399.99
Weight	15.68 ounces	7.5 ounces
Prefer		

Feature	TG-4	G9
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Weight	7.36 lb	7.5 lb
Prefer		

We recommend:

(Custom) Product Recommendations via CBCA

- Individual preference estimates with few questions (5):
 - Need very accurate question = adaptive
 - Still need confidence measure on estimates
- Minimize uncertainty / variance good, but secondary:
 - Objective is good recommendation (M-Efficiency)
 - Final use of preference is risk-averse optimization problem
 - Need intuitive geometric model to combine learning with optimization

Towards Optimal Product Recommendation

Find enough information about preferences to recommend

 How do I pick the next question to obtain the largest reduction of uncertainty or "variance" on preferences

Choice-based Conjoint Analysis

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
I would buy toy		
Product Profile	x^1	x^2

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x^2$$

MNL Preference Model

Utilities for 2 products, d features

$$U_1 = \beta \cdot x^1 + \epsilon_1 = \sum_{i=1}^d \beta_i x_i^1 + \epsilon_1$$

$$U_2 = \beta \cdot x^2 + \epsilon_2 = \sum_{i=1}^d \beta_i x_i^2 + \epsilon_2$$
 part-worths \uparrow noise (gumbel)

- Utility maximizing customer: $x^1 \succeq x^2 \Leftrightarrow U_1 "\geq "U_2$
- Noise can result in response error:

$$\mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right) = \frac{e^{\beta \cdot x^{1}}}{e^{\beta \cdot x^{1}} + e^{\beta \cdot x^{2}}}$$

5/26

Next Question To Reduce "Variance": Bayesian

- Question Selection: Enumeration X
- Recommendation: Risk-averse Stochastic Optimization X

Next Question To Reduce "Variance": Polyhedral

- Update ignores response error X
- Question Selection: (Multi-Obj.) Discrete Optimization
- Recommendation: Robust Optimization

 ✓

"Improving" the 2004 Polyhedral Method

- More "re-interpreting" ideas from Toubia, Hauser and Simester, '04 (and Toubia, Hauser and Garcia '07)
- Our "improvements":

1. Incorporate response error

- Adaptations by Toubia, Hauser and Garcia '07 and Bertsimas and O'Hair '13
 - Not MNL model
 - Loose simple geometric interpretation = complicates update,
 question selection and recommendation problem
- Replace polyhedra with ellipsoids = have your cake and eat it too!

2. "Improve" question selection

- Optimize widely used variance metric = D-efficiency
- Just the right balance from guidelines from Toubia et al. 2004

Polyhedral Method

Preference Model and Geometric Interpretation

Utilities for 2 products, d features, logit model

$$U_1 = \beta \cdot x^1 + \mathbf{E}_1 = \sum_{i=1}^d \beta_i x_i^1 + \mathbf{E}_1$$

$$U_2 = \beta \cdot x^2 + \mathbf{E}_2 = \sum_{i=1}^d \beta_i x_i^2 + \mathbf{E}_2$$
 part-worths product profile noise (gumbel)

- Utility maximizing customer
 - Geometric interpretation of preference for product 1 without error

$$x^1 \succeq x^2 \Leftrightarrow U_1 \geq U_2$$

Polyhedral Method: Ask Question and Update

2nd geometric Geometric prior for $\beta \longrightarrow x^1 \succ x^2 \longrightarrow$ posterior for β

Ellipsoidal Methods for Adaptive CBCA

Polyhedral: Estimation and Question Selection

Good estimation? for β ? Lefthanic feel blin by syminter by try

Polyhedral Method: Non-ellipsoidal Sets

Idea from Nonlinear Programming (NLP): Approximate ellipsoid through analytic center.

'l 13 / 26

Incorporating Response Error

First Improvement: Ellipsoidal Updates

- Polyhedral updates
 - Assumes no errors
 - Region complexity increases
- NLP again: ellipsoid method
 - Use minimum volumeellipsoid = simple formula ...
 - or use corrected ellipsoid = simple modification to formula

Distributions and Credibility Ellipsoids

Answers with Error: Logit Probabilities

Likelihood Function

Question/Answer

Bayesian Update and Geometric Updates

Geometric Comparison of Updates

Min. Volume Ellipsoid

Simple Formula

Corrected Ellipsoid

Simple Formula

Bayesian for Normal Approx.

1-dim integral \odot 10⁴ \rightarrow 10⁷ samples

Computational Comparison of Updates

- Gaussian prior and 90% credibility ellipsoid, 100 inst.
 - 12 features, 2 profiles and 5 questions

	Polyhedral	Ellipsoidal	Corrected Ellipsoidal	1-step Bayes
Feasible β	0.53	1	1	0.93
Distance (scaled)	0.92	0.86	0.88	0.85
Gaussian Volume	0.03	0.85	0.82	0.40

Improving Question Selection: Optimizing D-Efficiency

D-Efficiency and Posterior Covariance Matrix

- D-Efficiency:
- $f\left(x^{1}, x^{2}\right) := \mathbb{E}_{\beta, x^{1} \leq /\succeq x^{2}} \left(\det(\Sigma_{i})^{1/p}\right)$
 - p=2 proportional to expected volume of posterior ellipsoid

Even evaluating expected D-Efficiency for a question requires multidimensional integration

Back to Question Selection: Property Trade-off

$$(\beta - \mu)' \cdot \Sigma^{-1} \cdot (\beta - \mu) \le r$$

- Choice balance:
 - Minimize distance to center

$$\mu \cdot (x^1 - x^2)$$

- Postchoice symmetry:
 - Maximize variance of question

$$(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$$

D-efficiency: Balance Question Trade-off

• D-efficiency = Non-convex function $f(\mathbf{d}, v)$ of

distance:
$$d := \mu \cdot (x^1 - x^2)$$

variance:
$$v := (x^1 - x^2)' \cdot \sum (x^1 - x^2)$$

Can evaluate f(d, v) with 1-dim integral \odot

Piecewise Linear Interpolation

Optimal question selection = MIP

Computational Results for Question Selection

- Gaussian prior and 90% credibility ellipsoid, 100 inst.
 - 12 features, 2 profiles, 5 questions, 1-step Bayes

	Toubia et al.	PWL D-Efficiency
Feasible eta	0.90	0.91
Distance (scaled)	0.97	0.85
D-Efficiency	2.2E+07	7.00E+06
Gaussian Volume	0.74	0.40

1 step for random covariance/ellipsoid

	Toubia et al.	PWL D-Efficiency
D-Efficiency	0.016	0.015
variance	110	83
distance	8.6	1.2
Area R1 / R2	32% / 68%	47% / 53%

Summary

Messages:

- Always choose Chewbacca!
- Polyhedral → Geometric ≈ Bayesian
 - Question selection and update with optimization and limited sampling (1-dim integrals)
 - Point estimation and credibility region
 - Improvements in point estimation, reduction of uncertainty and precision of credibility region
 - Also works for more profiles and attribute levels

Future:

- Combination and comparison with fully Bayesian
- Combine with polyhedral updates
- Computational improvements
- Field experiments