Mixed Integer Programming Approaches for Real-Time Consumer Preference Elicitation (and Causal Inference)

Juan Pablo Vielma

Massachusetts Institute of Technology

Operations Management/Management Science Workshop Booth School of Business, University of Chicago.

Chicago, IL, October, 2017.

(Nonlinear) Mixed Integer Programming (MIP)

 $\min f(x)$

s.t.

$$x \in C$$

 $x_i \in \mathbb{Z} \quad i \in I$

Mostly convex f and C.

Marketing
And
Experimental Design

Causal Inference for Educational Impact of 2010 Chilean Earthquake

"Infinite"-Dimensional
MIP and Control or
Aerial Drones

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
 - Commercial Solver Speedup ≈ 1.9 x / year

- Mostly linear, but also quadratic:
 - Gurobi v6.0 (2014) v6.5 (2015) quadratic: 4.43 x
 (V., Dunning, Huchette, Lubin, 2015)
- Also great "open-source" solvers

CBC

GLPK

Emerging: General Convex Nonlinear (e.g. SDP)

Bonmin <

MIP Modelling and Advanced Formulations

- MIP Representability: What can be modeled with MIP?
 - Linear: Jeroslow & Lowe '80s ... Basu, Martin, Ryan and Wang '17
 - Convex Nonlinear:
 - MIP formulation for the set of Prime Numbers
 - ✓ Non-Convex Polynomial MIP formulation (Jones et al. '76)
 - X Convex of any kind (Lubin, Zadik and V. '17)
- Linear/nonlinear formulation techniques:

Accessing Solvers = Modelling Languages

User-friendly algebraic modelling languages (AML):

Standalone and Fast

Based on General Language and Versatile

• 21st Century AML:

- Free and Open-Source
- Easy to use, but as advanced as proprietary C/C++ interphases
- As fast as standalone AMLs and C/C++ interphases

Created by students

Iain Dunning, Miles Lubin and Joey Huchette 2016 ICS Prize

Community Developers

Software Engineer

Jarrett Revels

JuMP-Suit?

Juan Pablo Vielma

Outline

- MIP and Consumer Preference Elicitation
 - Direct improvement from MIP formulation
 - Fast, versatile and efficient learning

- MIP and Causal Inference
 - Indirect improvement from MIP formulation
 - Right formulation brings you back to solving the problem you really wanted to solve

Mixed Integer Programming (joint work with Joey Huchette)

and

Consumer Preference Elicitation (joint work with Denis Saure)

Adaptive Choice-Based Conjoint Analysis

Today: Minimize variance of parameter estimates

Parametric Model = **Logistic Regression**

Product profile

MNL Random Linear Utility

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x^2$$

$$U_{j} = \underbrace{\beta \cdot x^{j}}_{d} + \epsilon_{j}$$

$$\sum_{j=1}^{d} \beta_{i} x_{i}^{j}$$

$$x^1$$
 x^2

$$\longrightarrow$$
 $z = x^1 - x^2$

Question:

$$x^1 \succ x^2 \Leftrightarrow U_1 \text{ ">"} U_2$$

 $\Leftrightarrow \beta \cdot z \text{ ">"} 0$

$$x^{1} \succ x^{2} \Leftrightarrow U_{1} ">" U_{2} \\ \Leftrightarrow \beta \cdot z ">" 0$$

$$\mathbb{P}(x^{1} \succ x^{2} \mid \beta) = \frac{1}{1 + e^{-\beta \cdot z}}$$

Bayesian Model with Normal Prior

D-Error and Expected Posterior Variance

$$f(\boldsymbol{z}, \mu, \Sigma) := \mathbb{E}_{\boldsymbol{y}, \beta} \left\{ (\det \operatorname{cov}(\beta \mid \boldsymbol{y}, \boldsymbol{z}))^{1/m} \right\}$$

$$\min_{\pmb{z}\in\{-1,0,1\}^{\pmb{n}}\setminus\{\pmb{0}\}} f(\pmb{z},\mu,\Sigma) \quad \text{$f(\pmb{z},\mu,\Sigma)$ is hard to evaluate, non-convex and $\pmb{\eta}$ large}$$

1st Step: Moment-Matching Approximate Bayes

Answer likelihood

$$\beta \sim N\left(\mu^i, \Sigma^i\right)$$

Posterior distribution

$$\beta \stackrel{approx.}{\sim} N\left(\mu^{i+1}, \Sigma^{i+1}\right)$$

- $\bullet \quad \mu^{i+1} = \mathbb{E}\left(\beta \mid y, x^1, x^2\right)$
- $\bullet \quad \Sigma^{i+1} = \operatorname{cov}\left(\beta \mid y, x^1, x^2\right)$
- Linear Algebra + 1-d numerical integration (e.g. BDA3)

2nd Step: More Linear Algebra from V. and S. '16

• D-efficiency f(z) = Non-convex function f(d, v) of

mean:
$$d := \mu \cdot z$$

variance:
$$v := z' \cdot \sum z$$

Can evaluate f(d, v) with 1-dim integral \odot

Piecewise Linear (PWL) Interpolation $\hat{f}(d, v)$

Balances known criteria:

- minimize mean of question (no clear expected answer)
- maximize variance of question (uncertainty in expected answer)

3rd Step: "Almost" Direct Linear MIP Formulation

$$z = x^1 - x^2$$

MIP formulation for PWL function

min

$$\hat{f}(d,v)$$

s.t.

$$\mu \cdot (x^1 - x^2) = d$$

$$(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2) = v$$

$$(x^{1} - x^{2})' \cdot \sum \cdot (x^{1} - x^{2}) = v$$

$$\text{linearize } x_{i}^{k} \cdot x_{j}^{l} \|x^{1} - x^{2}\|_{2}^{2} \ge 1 \quad (x^{1} \ne x^{2})$$

$$(x^1 \neq x^2)$$

$$x^1, x^2 \in \{0, 1\}^n$$

Simple Formulation for Univariate Functions

$$z = f(x)$$

Size = O (# of segments)

Non-Ideal: Fractional Extreme Points

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0, 1\}^4, \quad \sum_{i=1}^{4} y_i = 1$$

$$0 \le \lambda_1 \le y_1$$

$$0 \le \lambda_2 \le y_1 + y_2$$

$$0 \le \lambda_3 \le y_2 + y_3$$

$$0 \le \lambda_4 \le y_3 + y_4$$
etc.
$$0 \le \lambda_5 \le y_4$$

Advanced Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \binom{d_j}{f(d_j)} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0,1\}^2$$

$$0 \le \lambda_1 + \lambda_5 \le 1 - y_1$$

$$0 \le \lambda_3 \qquad \le y_1$$

$$0 \le \lambda_4 + \lambda_5 \le 1 - y_2$$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$

Significant computational advantage

V. and Nemhauser, 2011. 16/34

Technique Also Works for Multivariate Functions

Union Jack triangulation
 (V. and Nemhauser, 2011)

$$- Size = 4 \lceil \log_2 n \rceil + 2$$

- For general triangulations (Huchette and V., 2016, 2017)
 - $-\operatorname{Size} \le 4 \lceil \log_2 n \rceil + 6$
 - Based on finding a bi-clique cover of an auxiliary graph
 - Can use a MIP to find the smallest formulation!

PiecewiseLinearOpt.jl (Huchette and V. 2017)

```
\exp(x+y)
min
                            Automatically select Δ
s.t.
                            Automatically construct
        x, y \in [0, 1]
                          formulation (easily chosen)
                                                            10
```

```
using JuMP, PiecewiseLinearOpt
m = Model()
@variable(m, x)
@variable(m, y)
z = piecewiselinear(m, x, y, 0:0.1:1, 0:0.1:1, (u,v) -> exp(u+v))
@objective(m, Min, z)
```



```
function qetquestion(\mu, \Sigma, variance fuction)
  n = size(\Sigma, 1)
  m = Model()
  # define variables for linearization
  @variable(m, 0 \le x[1:n] \le 1, Int)
  @variable(m, 0 \le y[1:n] \le 1, Int)
  # X # Y
  Qconstraint(m, linguad(m, (x-y) \cdot (x-y)) >= 1)
  # v = x-y, \beta \sim \mathcal{N}(\mu, \Sigma), v \cdot \beta \sim \mathcal{N}(\mu_v, \sigma^2), \mu_v = \mu \cdot v, \sigma^2 = v' * \Sigma * v
  @variable(m, μ<sub>ν</sub>)
  Qconstraint(m, \mu_v == \mu \cdot (x-y))
  @variable(m, \sigma^2 >= 0)
  @constraint(m, \sigma^2 == linguad(m, (x-y) \cdot (\Sigma * (x-y))))
  # (x-y)'*\Sigma*(x-y) \le eigmax(\Sigma) ||x-y||_2 \le eigmax(\Sigma)*n
  \overline{\sigma}^2 = eigmax(\Sigma)*n
  # (x-y)'*\Sigma*(x-y) >= eigmin(\Sigma) ||x-y||_2 >= eigmin(\Sigma) (x \neq y)
  \sigma^2 = eigmin(\Sigma)
  \overline{\mu}_{v} = \operatorname{norm}(\mu, 1)
  \mu_vnpoints = 2^k - 1
  \mu_{\nu} points = 0:\overline{\mu}_{\nu}/\mu_{\nu} npoints: \overline{\mu}_{\nu}+(\overline{\mu}_{\nu}/\mu_{\nu} npoints)/2
  \sigma^2 range = \overline{\sigma}^2 - \sigma^2
  \sigma^2npoints = 2^k-1
  \sigma^2 points = \sigma^2: \sigma^2 range/\sigma^2 npoints: \sigma^2+(\sigma^2 range/\sigma^2 npoints)/2
  pwl = BivariatePWLFunction(\mu_{\nu} points, \sigma^{2} points, (\mu_{\nu}, \sigma^{2}) \rightarrow variancefuction(<math>\mu_{\nu}, sqrt(\sigma^{2})))
  obj = piecewiselinear(m, \mu_v, \sigma^2, pwl)
  @objective(m, Min, obj )
  status = solve(m)
  return [ round(Int64,getvalue(x)), round(Int64,getvalue(y))]
```

MIP v/s Best Benchmark (Toubia et al. '03,'04)

- 16 questions, 2 options, 12 features, 100 individual β^* sampled from known prior $N(\mu, \Sigma)$
- Best benchmark v/s MIP + Moment Matching
- CPLEX: ≤ 1 s (0.2 s Avg.), GLPK: ≤ 5 s (1.7 s Avg.)

Easy To Add Questionnaire Rules

Realism is important: Wookiees are not Droids!

$$x_{\text{Wookie}}^1 + x_{\text{Droid}}^1 \le 1$$

- Partial Profiles:
 - Limit # of feature differences and assume those not shown are the same (e.g. both are members of the resistance)

$$||x^1 - x^2||_1 \le 3$$

Full v/s Partial Profiles (# Feature Differences)

- 16 questions, 2 options, 12 features, 100 individual β^* sampled from known prior $N(\mu, \Sigma)$
- Best benchmark v/s MIP + Moment Matching (CPLEX)
- Full: ≤ 1 s (0.2 s Avg.), Partial (5 diff.): ≤ 66 s (8 s Avg.)

MIP and Causal Inference

Joint work with Magdalena Bennett and Jose Zubizarreta

Educational Impact of 2010 Chilean Earthquake

• 6th Strongest in Recorded History (8.8)

Impact on Educational Achievement (PSU Scores)?

Very High Quality Data is Available

Earthquake Intensity

Test Scores and Demographic Info₃₄

Covariate Balance Important for Inference

- Dose 1 = Control = Affected by Earthquake
- Dose 2 = Treatment = Not affected by Earthquake

	Do	Dose	
Covariate	1	2	
Gender			
Male	462	462	
Female	538	538	
School SES			
Low	75	75	
Mid-low	327	327	
Medium	294	294	
Mid-high	189	189	
High	115	115	
Mother's education			
Primary	335	335	
Secondary	426	426	
Technical	114	114	
College	114	114	
Missing	11	11	
<u>:</u>			

Traditional Matching: Exact v/s Fine Balance

Match units with same category in all covariates

Fine Balance

Different matches for different covatiates

Matching v/s MIP

- Matching: # Variables = (# treated) × (# controls)
- Simple MIP:
 - Just count & balance units in each category/covariate
 - # Variables = (# treated) + (# controls)
 - Can use known results (Balas and Pulleyblank, 1983) to show MIP formulation is as strong as matching formulation
 - Can show MIP formulation is integral for 2 covariates
 - Problem is NP-hard for > 2 covariates
 - Usually very fast solve times: cuppa coffee time ≈ 5 min
 - More flexible.... doses and representability!!

Multiple Doses + Representation

Base, Medium and High

	Dose		
Covariate	1	2	3
Gender			
Male	462	462	462
Female	538	538	538
School SES			
Low	75	75	75
Mid-low	327	327	327
Medium	294	294	294
Mid-high	189	189	189
High	115	115	115
Mother's education			
Primary	335	335	335
Secondary	426	426	426
Technical	114	114	114
College	114	114	114
Missing	11	11	11
:			
·			

Whole population

Population	Tomplete
ropulation	Template
0.39	0.40
0.09	0.09
0.15	0.14
0.05	0.04
0.41	0.43
0.13	0.12
0.12	0.12
0.01	0.01
0.26	0.26
0.30	0.31
0.13	0.12
0.13	0.14
0.09	0.09
0.01	0.02
	0.09 0.15 0.05 0.41 0.13 0.12 0.01 0.26 0.30 0.13 0.13 0.09

Template + Multiple Doses

Relative (To no Quake) Attendance Impact [%]

Relative (To no Quake) PSU Score Impact (150—850)

Summary

- Advances in MIP
 - Advanced Formulations
 - Advanced Solvers

- Direct advantage (Choice Based Conjoint Analysis)
 - Real-time and versatile adaptive questionnaires
 - Cut number of questions in half
 - 20% improvement in estimated parameter quality
 - Market-share predictions cut in half
- Indirect advantage (Causal Inference)
 - Good and flexible formulations can bring you back to solving the problem you really wanted to solve