Ellipsoidal Methods for Adaptive Choice-based Conjoint Analysis

Juan Pablo Vielma

Massachusetts Institute of Technology

Workshop in Consumer Analytics, San Pedro de Atacama, Chile. January, 2016.

Joint work Denis Sauré

Choice-based Conjoint Analysis (CBCA)

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
I would buy toy		

Product Recommendations via CBCA

- Very few questions (5) and possibly levels (2) and products per question (2):
 - Need very accurate question selection = adaptive
 - Need fast question selection ≠ full hierarchical bayes
- Good starting candidate = Polyhedral Method (Toubia et al. 2004)
 - Geometric/Bayesian interpretation
 - We improve update = geometric and quick bayes
 - We improve question selection = Mixed Integer Programming
 - We re-interpret question selection criteria = D-Efficiency

Choice-based Conjoint Analysis

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
I would buy toy		
Product Profile	x^1	x^2

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x^2$$

Preference Model and Geometric Interpretation

Utilities for 2 products, d features, logit model

$$U_1 = \beta \cdot x^1 + \sum_{i=1}^d \beta_i x_i^1 + \sum_{i=1}^d \beta_i x_i^2 + \sum_{i$$

- Utility maximizing customer
 - Geometric interpretation of preference for product 1 without error

$$x^1 \succeq x^2 \Leftrightarrow U_1 \geq U_2$$

Polyhedral Method (Toubia et al. 2004)

Pros:

- Very elegant purely geometric method
- No sampling required = very quick
- Output is convex set that contains part-worth vector β
 - Point estimation from set or risk-aware robust optimization
- Very good for high heterogeneity and low question error

Cons:

- Does not consider question error
 - Patches by Toubia et al. 2007 and Bertsimas O'Hair 2013, but loose elegance, interpretability and simplicity
- Question selection is good, but heuristic (can fail)

Polyhedral Method: Ask Question and Update

2nd geometric Geometric prior for $\beta \longrightarrow x^1 \succ x^2 \longrightarrow$ posterior for β

Polyhedral: Estimation and Question Selection

Good estimation? for β ? Lefther in the interest of the partial part

Polyhedral Method: Non-ellipsoidal Sets

Idea from Nonlinear Programming (NLP): Approximate ellipsoid through analytic center.

First Improvement: Ellipsoidal Updates

- Polyhedral updates
 - Assumes no errors
 - Region complexity increases
- NLP again: ellipsoid method
 - Use minimum volumeellipsoid = simple formula ...
 - or use corrected ellipsoid = simple modification to formula

Distributions and Credibility Ellipsoids

Answers with Error: Logit Probabilities

Question/Answer Likelihood Function $\mathbb{P}\left(x^{1} \succeq x^{2} \mid \beta\right) = \frac{e^{\beta \cdot x^{1}}}{e^{\beta \cdot x^{1}} + e^{\beta \cdot x^{2}}}$

Bayesian Update and Geometric Updates

Geometric Comparison of Updates

Min. Volume Ellipsoid

Simple Formula

Corrected Ellipsoid

Simple Formula

Bayesian for Normal Approx.

1-dim integral

Computational Comparison of Updates

- Gaussian prior and 90% credibility ellipsoid
 - 12 features, 2 profiles and 5 questions

	Polyhedral	Ellipsoidal	Corrected Ellipsoidal	1-step Bayes
Feasible β	0.53	1	1	0.93
Distance (scaled)	0.92	0.86	0.88	0.85
Gaussian Volume	0.03	0.85	0.82	0.40

Back to Question Selection: Property Trade-off

$$(\beta - \mu)' \cdot \Sigma^{-1} \cdot (\beta - \mu) \le r$$

- Choice balance:
 - Minimize distance to center

$$\mu \cdot (x^1 - x^2)$$

Maximize variance of question

$$(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$$

D-Efficiency and Posterior Covariance Matrix

D-efficiency: Balance Question Trade-off

• D-efficiency = Nonlinear function of

distance =
$$\mu \cdot (x^1 - x^2)$$

variance = $(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$

Computational Results for Question Selection

- Gaussian prior and 90% credibility ellipsoid, 100 inst.
 - 12 features, 2 profiles, 5 questions, 1-step Bayes

	Toubia et al.	PWL D-Efficiency
Feasible eta	0.88	0.92
Distance (scaled)	0.99	0.86
D-Efficiency	2.3E+07	7.01E+06
Gaussian Volume	0.75	0.40

1 step for random covariance/ellipsoid

	Toubia et al.	PWL D-Efficiency
Balance	0.39	0.83
D-Efficiency	0.018	0.016
distance	9.44	0.17
variance	111	80

Summary

Messages:

- Always choose Chewbacca!
- Polyhedral → Geometric ≈ Bayesian

- Point estimation and credibility region
- Improvements in point estimation, reduction of uncertainty and precision of credibility region

Future:

- Combination and comparison with fully Bayesian
- Pre-computing and Real-Time
- Use for recommendation

