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Mixed Integer Non-Linear Programming (MINLP)
Problems

zMINLP := max
x,y

cx + dy

s.t.

(x, y) ∈ C ⊂ Rn+p (MINLP)
x ∈ Zn

C is a convex compact set.
Assume for simplicity that MINLP is feasible.
Also let NLP be the nonlinear continuous relaxation
obtained by eliminating x ∈ Zn.
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Two Algorithm Approaches for MINLP

Non-linear programming (NLP) based branch-and-bound
algorithms (Borchers and Mitchell, 1994; Gupta and Ravindran,
1985, Leyffer 2001 and Stubbs and Mehrotra, 1999):

Analog of LP branch-and-bound for MILP.
Implementations: CPLEX 9.0 and 10.0 (ILOG, 2005) and
I-BB solver in Bonmin (Bonami et al., 2005)

Polyhedral relaxation based algorithms:
Outer approximation (Duran and Grossmann, 1986;
Fletcher and Leyffer, 1994)
Generalized Benders decomposition (Geoffrion, 1972).
LP/NLP-based branch-and-bound (Quesada and
Grossmann, 1992).
Extended cutting plane method (Westerlund and
Pettersson, 1995;Westerlund et al., 1994).
Implementations: I-OA, I-QG and I-Hyb solvers in Bonmin,
MINLP solver FilMINT (Abhishek et al., 2006).
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Branch-and-Bound Methods

A branch-and-bound node is defined by (lk, uk) ∈ Z2n.
The problem solved in a branch-and-bound node (lk, uk) is
obtained by adding lk ≤ x ≤ uk to some continuous
relaxation of MINLP.
Example:

zNLP(lk,uk) := max
x,y

cx + dy

s.t.

(x, y) ∈ C ⊂ Rn+p (NLP(lk, uk))

x ≥ lk

x ≤ uk
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NLP Based Branch-and-Bound Algorithms

x1

x2
c max

x
x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2
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NLP Based Branch-and-Bound Algorithms

x1

x2
c

x∗
max

x
x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

NLP((−∞,−∞)>, (∞,∞)>):
x∗1 = x∗2 ≈ 1.77 /∈ Z.
Branch: x1 ≤ 1 ∨ x1 ≥ 2.
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NLP Based Branch-and-Bound Algorithms

x1

x2
c max

x
x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

NLP((−∞,−∞)>, (1,∞)>)
x∗1 = 1, x∗2 ≈ 2.29 /∈ Z.
Branch: x2 ≤ 2 ∨ x2 ≥ 3.
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NLP Based Branch-and-Bound Algorithms

x1

x2
c max

x
x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

NLP((−∞,−∞)>, (1, 2)>)
x∗1 = 1, x∗2 = 2.
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NLP Based Branch-and-Bound Algorithms

x1

x2
c

x∗ max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2
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Polyheral Relaxation Based Algorithms

x1

x2
c

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2
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Polyheral Relaxation Based Algorithms

x1

x2
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Polyheral Relaxation Based Algorithms

x1

x2
c

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

max
x

x1 + x2

x ∈ [−2.5, 2.5]2 (OA)



Introduction Lifted LP Algorithm Computational Results Final Remarks

Polyheral Relaxation Based Algorithms

x1

x2
c x∗

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

max
x

x1 + x2

x ∈ [−2.5, 2.5]2 (OA)

OA((−∞,−∞)>, (∞,∞)>):

x∗1 = x∗2 = 2.5 /∈ Z.
Add cuts: xi ≤ b2.5c.



Introduction Lifted LP Algorithm Computational Results Final Remarks

Polyheral Relaxation Based Algorithms

x1

x2
c x∗

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

max
x

x1 + x2

x ∈ [−2.5, 2.5]2 (OA)

OA((−∞,−∞)>, (∞,∞)>):

x∗1 = x∗2 = 2.5 /∈ Z.
Add cuts: xi ≤ b2.5c.



Introduction Lifted LP Algorithm Computational Results Final Remarks

Polyheral Relaxation Based Algorithms

x1

x2
c

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

max
x

x1 + x2

x ∈ [−2.5, 2]2 (OA)



Introduction Lifted LP Algorithm Computational Results Final Remarks

Polyheral Relaxation Based Algorithms
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Polyheral Relaxation Based Algorithms

x1

x2
c

x∗

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

max
x

x1 + x2

x ∈ [−2.5, 2]2 (OA)

OA((−∞,−∞)>, (∞,∞)>):

x∗1 = x∗2 = 2, x /∈ B2(2.5).
Add cut: x1 + x2 ≤ 2.5

√
2.



Introduction Lifted LP Algorithm Computational Results Final Remarks

Polyheral Relaxation Based Algorithms

x1

x2
c

max
x

x1 + x2

x ∈ B2(2.5) (MINLP)

x ∈ Z2

max
x

x1 + x2

x ∈ [−2.5, 2]2 (OA)

x1 + x2 ≤ 2.5
√

2

OA((−∞,−∞)>, (∞,∞)>):

x∗2 = 2, x∗1 ≈ 1.53 /∈ Z,
x /∈ B2(2.5).
Branch: x1 ≤ 1 ∨ x1 ≥ 2.
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Polyheral Relaxation of Convex Sets

C = B2(r)

r
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Polyheral Relaxation of Convex Sets

C = B2(r)

r

r = 2

Lets relax to a regular 2k sided
polygon Pk.

B2(r) ⊂ Pk ⊂ (1 + ε)B2(r)
for ε = cos(π/2k)−1 − 1.
Good news: ε decreases
fast with k.
Bad news: Pk has
exponential in k number
of inequalities.
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Polyheral Relaxation of Convex Sets

C = B2(r)

r

r = 2

1.4
1r

Lets relax to a regular 2k sided
polygon Pk.

B2(r) ⊂ Pk ⊂ (1 + ε)B2(r)
for ε = cos(π/2k)−1 − 1.
Good news: ε decreases
fast with k.
Bad news: Pk has
exponential in k number
of inequalities.
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Polyheral Relaxation of Convex Sets

C = B2(r)

r
1.0

8r

r = 3

Lets relax to a regular 2k sided
polygon Pk.

B2(r) ⊂ Pk ⊂ (1 + ε)B2(r)
for ε = cos(π/2k)−1 − 1.
Good news: ε decreases
fast with k.
Bad news: Pk has
exponential in k number
of inequalities.



Introduction Lifted LP Algorithm Computational Results Final Remarks

Polyheral Relaxation of Convex Sets

C = B2(r)

r
1.0

2r

r = 4

Lets relax to a regular 2k sided
polygon Pk.

B2(r) ⊂ Pk ⊂ (1 + ε)B2(r)
for ε = cos(π/2k)−1 − 1.
Good news: ε decreases
fast with k.
Bad news: Pk has
exponential in k number
of inequalities.
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Polyheral Relaxation of Convex Sets

Really bad news: Any P ⊂ Rd such that

Bd(1) ⊂ P ⊂ (1 + ε)Bd(1)

has at least exp(d/(2(1 + ε))2) facets.
Possible solution: Projection of P ⊂ Rd+q to Rd can have
an exponential (w/r to facets and variables of P) number of
facets.
Exploiting this Ben-Tal and Nemirovski (Ben-Tal and
Nemirovski, 2001) gave a relaxation of Bd(1) with
O(d log(1/ε)) facets and extra variables (Construct 2k sided
polygon using projection and an extra trick).
Higher dimensional or lifted polyhedral relaxation of convex
sets.
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Lifted Linear Programming Relaxation of MINLP

zMINLP := max
x,y

cx + dy

s.t.

(x, y) ∈ C ⊂ Rn+p (MINLP)
x ∈ Zn

Polyhedron P ⊂ Rn+p+q such that:

C ⊂ {(x, y) ∈ Rn+p : ∃ v ∈ Rq s.t. (x, y, v) ∈ P}.

We get the relaxation of MINLP (and NLP):
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Lifted Linear Programming Relaxation of MINLP

zMINLP := max
x,y

cx + dy

s.t.

(x, y) ∈ C ⊂ Rn+p (MINLP)
x ∈ Zn

Polyhedron P ⊂ Rn+p+q such that:

C ⊂ {(x, y) ∈ Rn+p : ∃ v ∈ Rq s.t. (x, y, v) ∈ P}.

We get the relaxation of MINLP (and NLP):

zLP := max
x,y,v

cx + dy

s.t.

(x, y, v) ∈ P (LP)
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Branch-and-Bound Main Loop

Set global lower bound LB := −∞.1

Set l0i := −∞, u0
i := +∞ for all i ∈ {1, . . . , n}.2

Set node list H := {(l0, u0)}.3

while H 6= ∅ do4

Select and remove a node (lk, uk) ∈ H.5

ProcessNode(lk, uk).6

end7
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ProcessNode(lk, uk) Version 1

Solve LP(lk, uk) (Let (x∗, y∗) be the optimal solution).1

if LP(lk, uk) is feasible and zLP(lk,uk) > LB then2

if x∗ ∈ Zn then3

Update LB to zLP(lk,uk).4

else5

Branch on x∗ and add nodes to H.6

end7

end8
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Auxiliary Problem: Correct solution x∗

For x∗ ∈ Zn:

zNLP(x∗) := max
y

cx∗ + dy

s.t.

(x∗, y) ∈ C ⊂ Rn+p. (NLP(x∗))
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(LB,H) :=ProcessNode(lk, uk, LB,H) Version 2

Solve LP(lk, uk) (Let (x∗, y∗) be the optimal solution).1

if LP(lk, uk) is feasible and zLP(lk,uk) > LB then2

if x∗ ∈ Zn then3

Solve NLP(x∗).4

if NLP(x∗) is feasible and zNLP(x∗) > LB then5

Update LB to zNLP(x∗).6

end7

else8

Branch on x∗ and add nodes to H.9

end10

end11
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Correcting Integer Feasible Solutions is Not Enough

x

y
c

max
x,y

y

(x, y) ∈ B2(2) (MINLP)
x ∈ Z

max
x,y

y

(x, y) ∈ [−2, 2]2 (LP)

LP(−∞, 1):
x∗ = 1, y∗ = 2,
(x, y) /∈ B2(2).
NLP(x∗) → (xcor, ycor).
If we fathom we loose
optimum (0, 2)!
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Solution 1:
Branch: x ≤ 0 ∨ x ≥ 1.
Solve LP(−∞, 0).
We get optimum (0, 2).
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(LB,H) :=ProcessNode(lk, uk, LB,H) Final Version

Solve LP(lk, uk) (Let (x∗, y∗) be the optimal solution).1

if LP(lk, uk) is feasible and zLP(lk,uk) > LB then2

if x∗ ∈ Zn then3

Solve NLP(x∗).4

if NLP(x∗) is feasible and zNLP(x∗) > LB then5

Update LB to zNLP(x∗).6

end7

Extra Steps8

else9

Branch on x∗ and add nodes to H.10

end11

end12
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(LB,H) :=ProcessNode(lk, uk, LB,H) Final Version

if lk 6= uk then1

Solve NLP(lk, uk) (Let (x̃, ỹ) be the optimal solution).2

if NLP(lk, uk) is feasible and zNLP(lk,uk) > LB then3

if x̃ ∈ Zn then4

Update LB to zNLP(lk,uk).5

else6

Branch on x̃ and add nodes to H.7

end8

end9

end10



Introduction Lifted LP Algorithm Computational Results Final Remarks

Mixed Integer Conic Quadratic Programming Problems

zMICP := max
x,y

cx + dy

s.t.

Dx + Ey ≤ f

(x, y) ∈ CCi i ∈ I (MICP)
(x, y) ∈ Rn+p

x ∈ Zn

CCi is a conic quadratic constraint of the form

CC := {(x, y) ∈ Rn+p : ||Ax + By + δ||2 ≤ ax + by + δ0}

Also let CP be the continuous relaxation obtained by
eliminating x ∈ Zn.
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Ben-Tal Nemirovski Polyhedral Relaxation of CP

zLP(ε) := max
x,y,v

cx + dy

s.t.

Dx + Ey ≤ f (LP(ε))
(x, y, v) ∈ P(CCi, ε) i ∈ I
(x, y, v) ∈ Rn+p+q,

P(CCi, ε) polyhedron with O((n + p) log(1/ε)) variables and
constraints.



Introduction Lifted LP Algorithm Computational Results Final Remarks

Implementation of Lifted LP Branch-and-Bound
Algorithm: LP(ε) -BB

Using a version of the Ben-Tal Nemirovski relaxation
introduced by Glineur.
Implemented by modifying CPLEX 10’s MILP solver.
C++, Ilog Concert Technology. Branch, incumbent and
heuristic callbacks.
ε = 0.01 was selected after calibration experiments.
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Computational Experiments

Dual 2.4GHz Xeon workstation with 2GB of RAM running
Linux Kernel 2.4.
LP(ε) -BB v/s CPLEX 10’s MIQCP solver and Bonmin’s
I-BB, I-QG and I-Hyb.
Test set: Portfolio optimization problems with cardinality
constraints (Ceria and Stubbs, 2006; Lobo et al., 1998,
2007).
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Problem 1: Classical

max
x,y

āy

s.t.

||Q1/2y||2 ≤ σ
n∑

j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
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Problem 2 : Shortfall

max
x,y

āy

s.t.

||Q1/2y||2 ≤ σ
n∑

j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
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Problem 2 : Shortfall

max
x,y

āy

s.t.

||Q1/2y||2 ≤
āy−W low

i
Φ−1(ηi)

i ∈ {1, 2}

n∑
j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
Approximation of
Prob(āy ≥ W low

i ) ≥ ηi
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Problem 3 : Robust

max
x,y,r

r

s.t.

||Q1/2y||2 ≤ σ

α||R1/2y||2 ≤ āy− r
n∑

j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
Robust version from
uncertainty in ā.
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Instance Data

Maximum number of stocks K = 10.
Maximum risk σ = 0.2.
Shortfall constraints: η1 = 80%, W low

1 = 0.9, η2 = 97%,
W low

2 = 0.7 (Lobo et al., 1998, 2007).
Data generation for Classical and Shortfall from S&P 500
data following Lobo et al. (1998), (2007).
Data generation for Robust from S&P 500 data following
Ceria and Stubbs (2006).
Riskless asset included for Shortfall.
Random selection of n stocks out of 462.
100 instances for n ∈ {20, 30, 40, 50}, 10 for n ∈ {100, 200}.
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Average Solve Times [s] for n ∈ {20, 30}
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Performance Profiles

Solve Time Ratio to Best
Solver A B C Best A B C
Instance 1 2 8 16 2 1 4 8
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Instance 3 100 300 - 100 1 3 ∞
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Performance Profiles

Solve Time Ratio to Best
Solver A B C Best A B C
Instance 1 2 8 16 2 1 4 8
Instance 2 10 5 20 5 2 1 4
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Performance Profile for n ∈ {20, 30}
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Average Solve Times [s] for n ∈ {40, 50}
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Performance Profile for n ∈ {40, 50}

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

I-BB
I-Hyb
Cplex

LP(!)-BB



Introduction Lifted LP Algorithm Computational Results Final Remarks

Average Solve Times [s] for n ∈ {100, 200}
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Performance Profile for n ∈ {100, 200}
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Total Number of Nodes and Calls to Relaxations for
Small Instances

B-and-b nodes I-QG 3580051
B-and-b nodes I-Hyb 328316
B-and-b nodes I-BB 68915
B-and-b nodes CPLEX 85957
B-and-b nodes LP(ε) -BB 57933
LP(ε) -BB calls to CP(lk, uk) 2305
LP(ε) -BB calls to CP(x∗) 7810
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Final Remarks

Polyhedral relaxation algorithm for MINLP:
Based on a lifted polyhedral relaxation.
Branches on integer feasible solutions.
“Does not update the relaxation“.

Algorithm for the conic quadratic case:
Based on a lifted polyhedral relaxation by Ben-Tal and
Nemirovski.
Implemented by modifying CPLEX MILP solver.
Significantly outperforms other methods for portfolio
optimization problems.
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