(日) (日) (日) (日) (日) (日) (日)

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

Juan Pablo Vielma¹ Shabbir Ahmed¹ George L. Nemhauser¹

¹School of Industrial and Systems Engineering Georgia Institute of Technology

ISyE, Georgia Institute of Technology, February, 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Outline

Introduction

- Mixed Integer Non-Linear Programming (MINLP) Problems
- Two Existing Classes of Algorithms for MINLP
- Lifted LP Algorithm
 - Polyhedral Relaxation of Convex Sets: Higher Dimensional or Lifted
 - Lifted LP Branch-and-Bound Algorithm MINLP
 - Algorithm for Conic Quadratic Case Based on Ben-Tal Nemirovski Relaxation
- **Computational Results** 3
- **Final Remarks**

Lifted LP Algorithm

Computational Results

Final Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Mixed Integer Non-Linear Programming (MINLP) Problems

$$z_{\mathsf{MINLP}} := \max_{x,y} \quad cx + dy$$
s.t.
$$(x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{MINLP})$$

$$x \in \mathbb{Z}^{n}$$

- C is a convex compact set.
- Assume for simplicity that MINLP is feasible.
- Also let NLP be the nonlinear continuous relaxation obtained by eliminating *x* ∈ Zⁿ.

Computational Results

Final Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Two Algorithm Approaches for MINLP

- Non-linear programming (NLP) based branch-and-bound algorithms (Borchers and Mitchell, 1994; Gupta and Ravindran, 1985, Leyffer 2001 and Stubbs and Mehrotra, 1999):
 - Analog of LP branch-and-bound for MILP.
 - Implementations: CPLEX 9.0 and 10.0 (ILOG, 2005) and I-BB solver in Bonmin (Bonami et al., 2005)
- Polyhedral relaxation based algorithms:
 - Outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
 - Generalized Benders decomposition (Geoffrion, 1972).
 - LP/NLP-based branch-and-bound (Quesada and Grossmann, 1992).
 - Extended cutting plane method (Westerlund and Pettersson, 1995;Westerlund et al., 1994).
 - Implementations: I-OA, I-QG and I-Hyb solvers in Bonmin, MINLP solver FilMINT (Abhishek et al., 2006).

Computational Results

Final Remarks

Two Algorithm Approaches for MINLP

- Non-linear programming (NLP) based branch-and-bound algorithms (Borchers and Mitchell, 1994; Gupta and Ravindran, 1985, Leyffer 2001 and Stubbs and Mehrotra, 1999):
 - Analog of LP branch-and-bound for MILP.
 - Implementations: CPLEX 9.0 and 10.0 (ILOG, 2005) and I-BB solver in Bonmin (Bonami et al., 2005)
- Polyhedral relaxation based algorithms:
 - Outer approximation (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994)
 - Generalized Benders decomposition (Geoffrion, 1972).
 - LP/NLP-based branch-and-bound (Quesada and Grossmann, 1992).
 - Extended cutting plane method (Westerlund and Pettersson, 1995;Westerlund et al., 1994).
 - Implementations: I-OA, I-QG and I-Hyb solvers in Bonmin, MINLP solver FilMINT (Abhishek et al., 2006).

Lifted LP Algorithm

Computational Results

Final Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Branch-and-Bound Methods

- A branch-and-bound node is defined by $(l^k, u^k) \in \mathbb{Z}^{2n}$.
- The problem solved in a branch-and-bound node (*l^k*, *u^k*) is obtained by adding *l^k* ≤ *x* ≤ *u^k* to some continuous relaxation of MINLP.
- Example:

$$z_{\mathsf{NLP}(l^k, u^k)} := \max_{x, y} \quad cx + dy$$

s.t.
$$(x, y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{NLP}(l^k, u^k))$$

$$x \ge l^k$$

$$x \le u^k$$

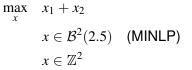
Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms





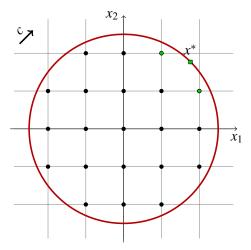
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



 $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$

NLP $((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top})$: • $x_1^* = x_2^* \approx 1.77 \notin \mathbb{Z}$. • Branch: $x_1 \le 1 \lor x_1 \ge 2$.

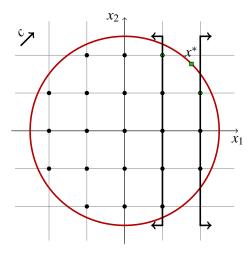
▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



- $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$
- NLP $((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top})$: • $x_1^* = x_2^* \approx 1.77 \notin \mathbb{Z}$. • Branch: $x_1 < 1 \lor x_1 > 2$.

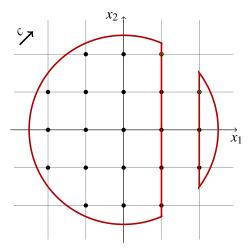
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



- $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$
- NLP $((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top})$: • $x_1^* = x_2^* \approx 1.77 \notin \mathbb{Z}$. • Branch: $x_1 < 1 \lor x_1 > 2$.

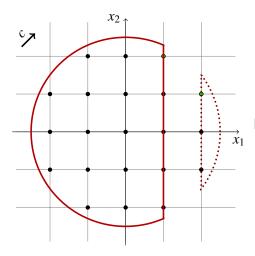
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



 $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$

NLP $((-\infty, -\infty)^{\mathsf{T}}, (1, \infty)^{\mathsf{T}})$ • $x_1^* = 1, x_2^* \approx 2.29 \notin \mathbb{Z}.$ • Branch: $x_2 \le 2 \lor x_2 \ge 3.$

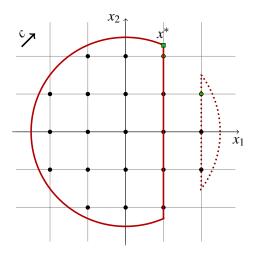
◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



 $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$

NLP
$$((-\infty, -\infty)^{\top}, (1, \infty)^{\top})$$

• $x_1^* = 1, x_2^* \approx 2.29 \notin \mathbb{Z}.$
• Branch: $x_2 \le 2 \lor x_2 \ge 3.$

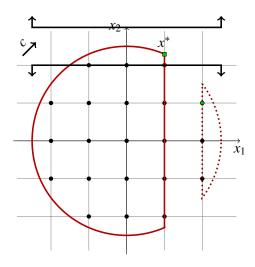
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



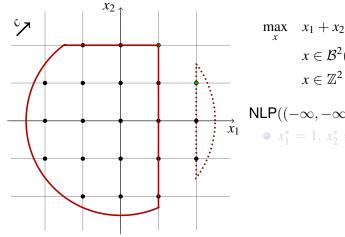
- $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$
- NLP $((-\infty, -\infty)^{\top}, (1, \infty)^{\top})$ • $x_1^* = 1, x_2^* \approx 2.29 \notin \mathbb{Z}.$ • Branch: $x_2 < 2 \lor x_2 > 3.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Lifted LP Algorithm

Computational Results

NLP Based Branch-and-Bound Algorithms



 $x \in \mathcal{B}^2(2.5)$ (MINLP) $x \in \mathbb{Z}^2$

 $\mathsf{NLP}((-\infty, -\infty)^{\top}, (1, 2)^{\top})$ • $x_1^* = 1, x_2^* = 2.$

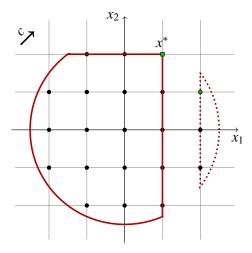
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Lifted LP Algorithm

Computational Results

Final Remarks

NLP Based Branch-and-Bound Algorithms



 $\max_{x} \quad x_1 + x_2$ $x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$ $x \in \mathbb{Z}^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

NLP
$$((-\infty, -\infty)^{\top}, (1, 2)^{\top})$$

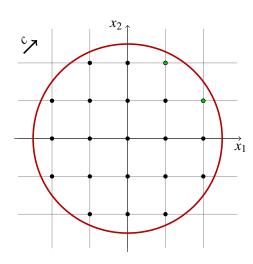
• $x_1^* = 1, x_2^* = 2.$

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_1 + x_2$$
$$x \in \mathcal{B}^2(2.5) \quad \text{(MINLP)}$$
$$x \in \mathbb{Z}^2$$

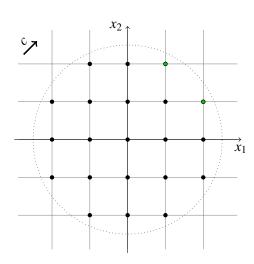
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_1 + x_2$$
$$x \in \mathcal{B}^2(2.5) \quad \text{(MINLP)}$$
$$x \in \mathbb{Z}^2$$

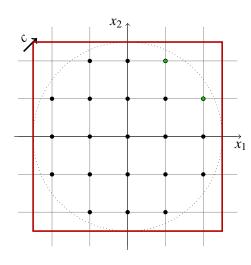
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_1 + x_2$$

$$x \in \mathcal{B}^2(2.5) \quad (\mathsf{MINLP})$$

$$x \in \mathbb{Z}^2$$

$$\max_{x} \quad x_1 + x_2$$

$$x \in [-2.5, 2.5]^2 \quad (\mathsf{OA})$$

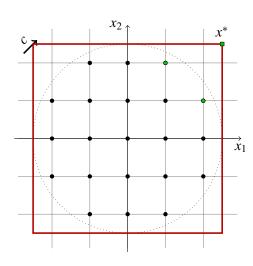
◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



\max_x	$x_1 + x_2$
	$x \in \mathcal{B}^2(2.5)$ (MINLP)
	$x \in \mathbb{Z}^2$
\max_x	$x_1 + x_2$
	$x \in [-2.5, 2.5]^2$ (OA)
$OA((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top})$:	
 x₁[*] = x₂[*] = 2.5 ∉ ℤ. Add cuts: x_i ≤ [2.5]. 	

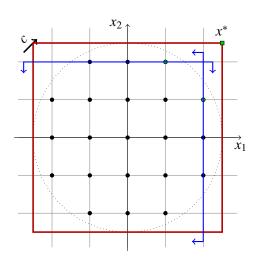
▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in \mathcal{B}^{2}(2.5) \quad (\text{MINLP})$$

$$x \in \mathbb{Z}^{2}$$

$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in [-2.5, 2.5]^{2} \quad (\text{OA})$$

$$OA((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top}):$$

$$x_{1}^{*} = x_{2}^{*} = 2.5 \notin \mathbb{Z}.$$

$$Add \text{ cuts: } x_{i} \leq \lfloor 2.5 \rfloor.$$

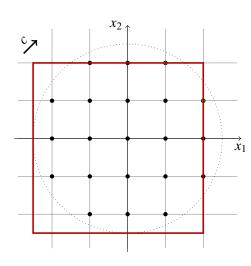
Lifted LP Algorithm

Computational Results

r

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in \mathcal{B}^{2}(2.5) \quad (\mathsf{MINLP})$$

$$x \in \mathbb{Z}^{2}$$

$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in [-2.5, 2]^{2} \quad (\mathsf{OA})$$

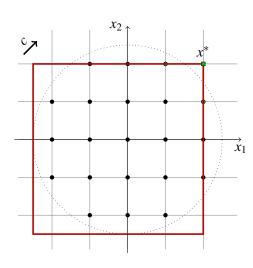
◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



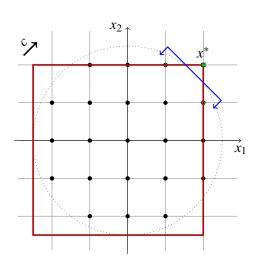
\max_{x}	$x_1 + x_2$
	$x \in \mathcal{B}^2(2.5)$ (MINLP)
	$x \in \mathbb{Z}^2$
\max_x	$x_1 + x_2$
	$x \in [-2.5, 2]^2$ (OA)
OA(($-\infty, -\infty)^{ op}, (\infty, \infty)^{ op})$:
-	$= x_2^* = 2, x \notin \mathcal{B}^2(2.5).$ d cut: $x_1 + x_2 \le 2.5\sqrt{2}.$

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



 $x_1 + x_2$ max x $x \in \mathcal{B}^2(2.5)$ (MINLP) $x \in \mathbb{Z}^2$ $x_1 + x_2$ max x $x \in [-2.5, 2]^2$ (OA) $OA((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top}):$ • $x_1^* = x_2^* = 2, x \notin \mathcal{B}^2(2.5).$ • Add cut: $x_1 + x_2 \le 2.5\sqrt{2}$.

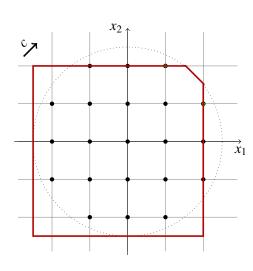
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



 $x_1 + x_2$ max x $x \in \mathcal{B}^2(2.5)$ (MINLP) $x \in \mathbb{Z}^2$ $x_1 + x_2$ max x $x \in [-2.5, 2]^2$ (OA) $x_1 + x_2 < 2.5\sqrt{2}$ $OA((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top})$: • $x_2^* = 2, x_1^* \approx 1.53 \notin \mathbb{Z},$ • Branch: $x_1 < 1 \lor x_1 > 2$.

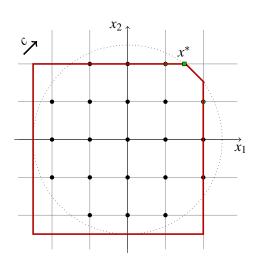
▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in \mathcal{B}^{2}(2.5) \quad (\text{MINLP})$$

$$x \in \mathbb{Z}^{2}$$

$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in [-2.5, 2]^{2} \quad (\text{OA})$$

$$x_{1} + x_{2} \leq 2.5\sqrt{2}$$

$$OA((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top}):$$
•
$$x_{2}^{*} = 2, x_{1}^{*} \approx 1.53 \notin \mathbb{Z},$$

$$x \notin \mathcal{B}^{2}(2.5).$$
• Branch: $x_{1} \leq 1 \lor x_{1} \geq 2.$

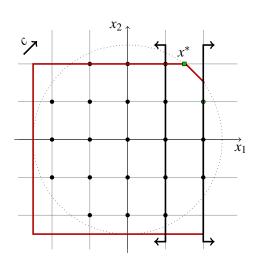
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_{1} + x_{2} \\ x \in \mathcal{B}^{2}(2.5) \quad (\text{MINLP}) \\ x \in \mathbb{Z}^{2} \\ \max_{x} \quad x_{1} + x_{2} \\ x \in [-2.5, 2]^{2} \quad (\text{OA}) \\ x_{1} + x_{2} \leq 2.5\sqrt{2} \\ \text{OA}((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top}): \\ \bullet \quad x_{2}^{*} = 2, \ x_{1}^{*} \approx 1.53 \notin \mathbb{Z}, \\ x \notin \mathcal{B}^{2}(2.5). \\ \bullet \text{ Branch: } x_{1} \leq 1 \lor x_{1} \geq 2.$$

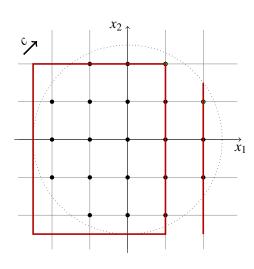
▲□ → ▲圖 → ▲目 → ▲目 → ▲目 → ④ ヘ () ペ

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in \mathcal{B}^{2}(2.5) \quad (\text{MINLP})$$

$$x \in \mathbb{Z}^{2}$$

$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in [-2.5, 2]^{2} \quad (\text{OA})$$

$$x_{1} + x_{2} \leq 2.5\sqrt{2}$$

$$OA((-\infty, -\infty)^{\top}, (\infty, \infty)^{\top}):$$

$$\sum_{x} x_{2}^{*} = 2, x_{1}^{*} \approx 1.53 \notin \mathbb{Z},$$

$$x \notin \mathcal{B}^{2}(2.5).$$

$$\bullet \text{ Branch: } x_{1} \leq 1 \lor x_{1} \geq 2.$$

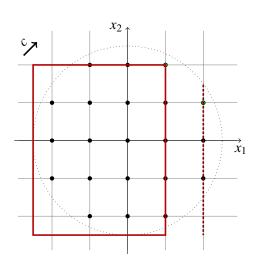
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



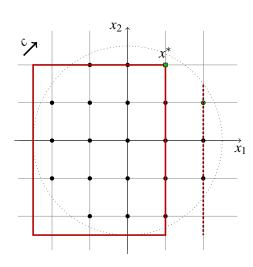
 $x_1 + x_2$ max x $x \in \mathcal{B}^2(2.5)$ (MINLP) $x \in \mathbb{Z}^2$ $x_1 + x_2$ max x $x \in [-2.5, 2]^2$ (OA) $x_1 + x_2 < 2.5\sqrt{2}$ $OA((-\infty, -\infty)^{\top}, (1, \infty)^{\top})$: • $x_1^* = 1, x_2^* = 2,$

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation Based Algorithms



$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in \mathcal{B}^{2}(2.5) \quad (\text{MINLP})$$

$$x \in \mathbb{Z}^{2}$$

$$\max_{x} \quad x_{1} + x_{2}$$

$$x \in [-2.5, 2]^{2} \quad (\text{OA})$$

$$x_{1} + x_{2} \leq 2.5\sqrt{2}$$

$$OA((-\infty, -\infty)^{\top}, (1, \infty)^{\top}):$$
• $x_{1}^{*} = 1, x_{2}^{*} = 2,$

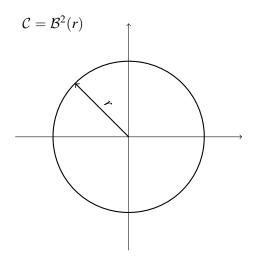
$$x \in \mathcal{B}^{2}(2.5).$$

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets

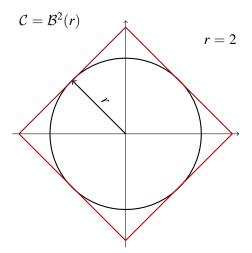


Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets



Lets relax to a regular 2^k sided polygon \mathcal{P}_k .

- $\mathcal{B}^2(r) \subset \mathcal{P}_k \subset (1+\varepsilon)\mathcal{B}^2(r)$ for $\varepsilon = \cos(\pi/2^k)^{-1} - 1$.
- Good news: ϵ decreases fast with k.
- Bad news: *P_k* has exponential in *k* number of inequalities.

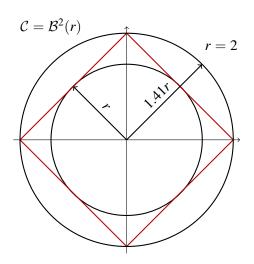
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets



Lets relax to a regular 2^k sided polygon \mathcal{P}_k .

- $\mathcal{B}^2(r) \subset \mathcal{P}_k \subset (1+\varepsilon)\mathcal{B}^2(r)$ for $\varepsilon = \cos(\pi/2^k)^{-1} - 1$.
- Good news: ϵ decreases fast with k.
- Bad news: \mathcal{P}_k has exponential in k number of inequalities.

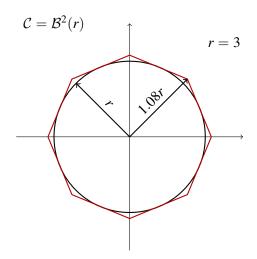
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets



Lets relax to a regular 2^k sided polygon \mathcal{P}_k .

- $\mathcal{B}^2(r) \subset \mathcal{P}_k \subset (1+\varepsilon)\mathcal{B}^2(r)$ for $\varepsilon = \cos(\pi/2^k)^{-1} - 1$.
- Good news: ϵ decreases fast with k.
- Bad news: \mathcal{P}_k has exponential in k number of inequalities.

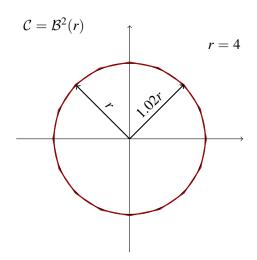
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Lifted LP Algorithm

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets



Lets relax to a regular 2^k sided polygon \mathcal{P}_k .

- $\mathcal{B}^2(r) \subset \mathcal{P}_k \subset (1+\varepsilon)\mathcal{B}^2(r)$ for $\varepsilon = \cos(\pi/2^k)^{-1} - 1$.
- Good news: ϵ decreases fast with k.
- Bad news: *P_k* has exponential in *k* number of inequalities.

(日) (日) (日) (日) (日) (日) (日)

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets

• Really bad news: Any $\mathcal{P} \subset \mathbb{R}^d$ such that

$$\mathcal{B}^d(1) \subset \mathcal{P} \subset (1+\varepsilon)\mathcal{B}^d(1)$$

has at least $\exp(d/(2(1+\varepsilon))^2)$ facets.

- Possible solution: Projection of $\mathcal{P} \subset \mathbb{R}^{d+q}$ to \mathbb{R}^d can have an exponential (w/r to facets and variables of \mathcal{P}) number of facets.
- Exploiting this Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) gave a relaxation of B^d(1) with O(d log(1/ε)) facets and extra variables (Construct 2^k sided polygon using projection and an extra trick).
- Higher dimensional or lifted polyhedral relaxation of convex sets.

Computational Results

Final Remarks

Polyheral Relaxation of Convex Sets

• Really bad news: Any $\mathcal{P} \subset \mathbb{R}^d$ such that

$$\mathcal{B}^d(1) \subset \mathcal{P} \subset (1+\varepsilon)\mathcal{B}^d(1)$$

has at least $\exp(d/(2(1+\varepsilon))^2)$ facets.

- Possible solution: Projection of *P* ⊂ ℝ^{d+q} to ℝ^d can have an exponential (w/r to facets and variables of *P*) number of facets.
- Exploiting this Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) gave a relaxation of B^d(1) with O(d log(1/ε)) facets and extra variables (Construct 2^k sided polygon using projection and an extra trick).
- Higher dimensional or lifted polyhedral relaxation of convex sets.

Final Remarks

Polyheral Relaxation of Convex Sets

• Really bad news: Any $\mathcal{P} \subset \mathbb{R}^d$ such that

$$\mathcal{B}^d(1) \subset \mathcal{P} \subset (1+\varepsilon)\mathcal{B}^d(1)$$

has at least $\exp(d/(2(1+\varepsilon))^2)$ facets.

- Possible solution: Projection of *P* ⊂ ℝ^{d+q} to ℝ^d can have an exponential (w/r to facets and variables of *P*) number of facets.
- Exploiting this Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) gave a relaxation of B^d(1) with O(d log(1/ε)) facets and extra variables (Construct 2^k sided polygon using projection and an extra trick).
- Higher dimensional or lifted polyhedral relaxation of convex sets.

Final Remarks

Polyheral Relaxation of Convex Sets

• Really bad news: Any $\mathcal{P} \subset \mathbb{R}^d$ such that

$$\mathcal{B}^d(1) \subset \mathcal{P} \subset (1+\varepsilon)\mathcal{B}^d(1)$$

has at least $\exp(d/(2(1+\varepsilon))^2)$ facets.

- Possible solution: Projection of *P* ⊂ ℝ^{d+q} to ℝ^d can have an exponential (w/r to facets and variables of *P*) number of facets.
- Exploiting this Ben-Tal and Nemirovski (Ben-Tal and Nemirovski, 2001) gave a relaxation of B^d(1) with O(d log(1/ε)) facets and extra variables (Construct 2^k sided polygon using projection and an extra trick).
- Higher dimensional or lifted polyhedral relaxation of convex sets.

Lifted LP Algorithm

Computational Results

Final Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifted Linear Programming Relaxation of MINLP

$$z_{\mathsf{MINLP}} := \max_{x,y} \quad cx + dy$$
s.t.
$$(x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p}$$

$$x \in \mathbb{Z}^{n}$$
(MINLP)

• Polyhedron $\mathcal{P} \subset \mathbb{R}^{n+p+q}$ such that:

 $\mathcal{C} \subset \{(x, y) \in \mathbb{R}^{n+p} : \exists v \in \mathbb{R}^q \text{ s.t. } (x, y, v) \in \mathcal{P}\}.$

• We get the relaxation of MINLP (and NLP):

Lifted LP Algorithm

Computational Results

Final Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lifted Linear Programming Relaxation of MINLP

$$z_{\mathsf{MINLP}} := \max_{x,y} \quad cx + dy$$

s.t.
$$(x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p}$$
$$x \in \mathbb{Z}^{n}$$
(MINLP)

• Polyhedron $\mathcal{P} \subset \mathbb{R}^{n+p+q}$ such that:

 $\mathcal{C} \subset \{(x, y) \in \mathbb{R}^{n+p} : \exists v \in \mathbb{R}^q \text{ s.t. } (x, y, v) \in \mathcal{P}\}.$

• We get the relaxation of MINLP (and NLP):

Lifted LP Algorithm

Computational Results

Final Remarks

Lifted Linear Programming Relaxation of MINLP

$$z_{\mathsf{MINLP}} := \max_{x,y} \quad cx + dy$$
s.t.
$$(x,y) \in \mathcal{C} \subset \mathbb{R}^{n+p} \qquad (\mathsf{MINLP})$$

$$x \in \mathbb{Z}^{n}$$

• Polyhedron $\mathcal{P} \subset \mathbb{R}^{n+p+q}$ such that:

 $\mathcal{C} \subset \{(x, y) \in \mathbb{R}^{n+p} : \exists v \in \mathbb{R}^q \text{ s.t. } (x, y, v) \in \mathcal{P}\}.$

• We get the relaxation of MINLP (and NLP):

$$z_{\mathsf{LP}} := \max_{x, y, v} \quad cx + dy$$

s.t.
$$(x, y, v) \in \mathcal{P}$$
 (LP)

(日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Branch-and-Bound Main Loop

- 1 Set global lower bound $LB := -\infty$.
- 2 Set $l_i^0 := -\infty$, $u_i^0 := +\infty$ for all $i \in \{1, \ldots, n\}$.
- 3 Set node list $\mathcal{H} := \{(l^0, u^0)\}.$
- 4 while $\mathcal{H} \neq \emptyset$ do
- **5** Select and remove a node $(l^k, u^k) \in \mathcal{H}$.
- 6 ProcessNode (l^k, u^k) .
- 7 end

Lifted LP Algorithm

Computational Results

Final Remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

ProcessNode (l^k, u^k) Version 1

- 1 Solve $LP(l^k, u^k)$ (Let (x^*, y^*) be the optimal solution).
- $\mathbf{2} \; \text{ if } \mathsf{LP}(l^k, u^k) \; \text{is feasible and } \mathbf{z}_{\mathsf{LP}(l^k, u^k)} > \mathsf{LB} \; \text{then}$
- 3 if $x^* \in \mathbb{Z}^n$ then
 - Update LB to $z_{LP(l^k, u^k)}$.

5 else

4

6

Branch on x^* and add nodes to \mathcal{H} .

```
7 end
```

8 end

Lifted LP Algorithm

Computational Results

Final Remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

ProcessNode (l^k, u^k) Version 1

- 1 Solve $LP(l^k, u^k)$ (Let (x^*, y^*) be the optimal solution).
- 2 if $LP(l^k, u^k)$ is feasible and $z_{LP(l^k, u^k)} > LB$ then 3 | if $x^* \in \mathbb{Z}^n$ then 4 | Update LB to $z_{LP(l^k, u^k)}$. 5 | else 6 | Branch on x^* and add nodes to \mathcal{H} . 7 | end 8 end

Lifted LP Algorithm

Computational Results

Final Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Auxiliary Problem: Correct solution x*

• For
$$x^* \in \mathbb{Z}^n$$
:

$$z_{\mathsf{NLP}(x^*)} := \max_{y} \quad cx^* + dy$$
s.t.
$$(x^*, y) \in \mathcal{C} \subset \mathbb{R}^{n+p}. \qquad (\mathsf{NLP}(x^*))$$

```
\begin{array}{ccc} & & \text{Lifted LP Algorithm} & & \text{Computational Results} & & \text{Final Remarks} \\ (\text{LB},\mathcal{H}) := \texttt{ProcessNode}(l^k,u^k,\text{LB},\mathcal{H}) \text{ Version 2} \end{array}
```

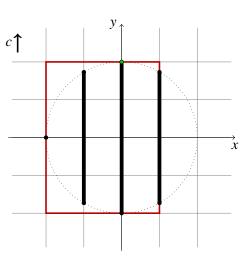
◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

```
1 Solve LP(l^k, u^k) (Let (x^*, y^*) be the optimal solution).
2 if LP(l^k, u^k) is feasible and z_{LP(l^k, u^k)} > LB then
       if x^* \in \mathbb{Z}^n then
 3
            Solve NLP(x^*).
 4
           if NLP(x^*) is feasible and z_{NLP(x^*)} > LB then
 5
                Update LB to z_{NLP}(x^*).
 6
 7
            end
       else
 8
            Branch on x^* and add nodes to \mathcal{H}.
 9
       end
10
11 end
```

Lifted LP Algorithm

Computational Results

Correcting Integer Feasible Solutions is Not Enough



y $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

 $\max_{x,y} y$

max

x, y

 $(x,y) \in [-2,2]^2$ (LP)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

 $\mathsf{LP}(-\infty,1)$:

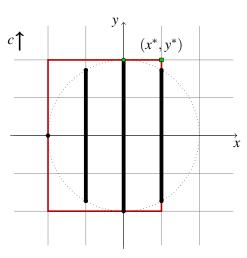
- $x^* = 1, y^* = 2,$ $(x, y) \notin \mathcal{B}^2(2).$
- $\mathsf{NLP}(x^*) \to (x^{cor}, y^{cor}).$
- If we fathom we loose optimum (0, 2)!

Lifted LP Algorithm

Computational Results

Final Remarks

Correcting Integer Feasible Solutions is Not Enough



y $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

 $\max_{x,y} y$

max

x, y

 $(x, y) \in [-2, 2]^2$ (LP)

 $\mathsf{LP}(-\infty, 1)$:

• $x^* = 1, y^* = 2,$ $(x, y) \notin \mathcal{B}^2(2).$

• $\mathsf{NLP}(x^*) \to (x^{cor}, y^{cor}).$

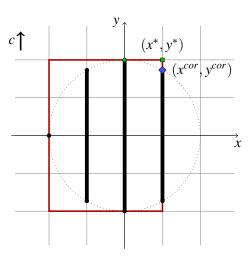
• If we fathom we loose optimum (0, 2)!

Lifted LP Algorithm

Computational Results

Final Remarks

Correcting Integer Feasible Solutions is Not Enough



y $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

 $\max_{x,y} y$

max

x, y

 $(x, y) \in [-2, 2]^2$ (LP)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

 $\mathsf{LP}(-\infty, 1)$:

- $x^* = 1, y^* = 2,$ $(x, y) \notin \mathcal{B}^2(2).$
- $\mathsf{NLP}(x^*) \to (x^{cor}, y^{cor}).$

• If we fathom we loose optimum (0, 2)!

Lifted LP Algorithm

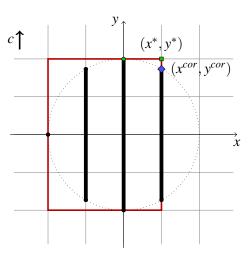
Computational Results

max

x, y

Final Remarks

Correcting Integer Feasible Solutions is Not Enough



y $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

 $\max_{x,y} y$

 $(x, y) \in [-2, 2]^2$ (LP)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

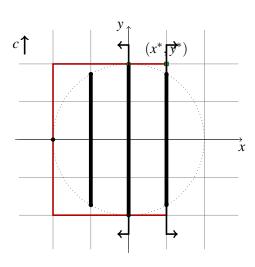
 $\mathsf{LP}(-\infty, 1)$:

- $x^* = 1, y^* = 2,$ $(x, y) \notin \mathcal{B}^2(2).$
- $\mathsf{NLP}(x^*) \to (x^{cor}, y^{cor}).$
- If we fathom we loose optimum (0, 2)!

Lifted LP Algorithm _____

Computational Results

Correcting Integer Feasible Solutions is Not Enough



max v $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

max y x, y

x, y

$$(x, y) \in [-2, 2]^2$$
 (LP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Solution 1:

• Branch: $x \le 0 \lor x \ge 1$.

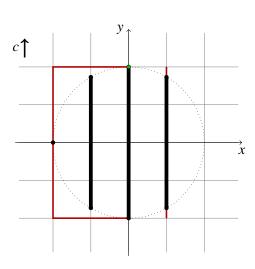
• Solve $LP(-\infty, 0)$.

• We get optimum (0, 2).

Computational Results

Final Remarks

Correcting Integer Feasible Solutions is Not Enough



max v $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

max y x, y

x, y

 $(x, y) \in [-2, 2]^2$ (LP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Solution 1:

• Branch: $x \le 0 \lor x \ge 1$.

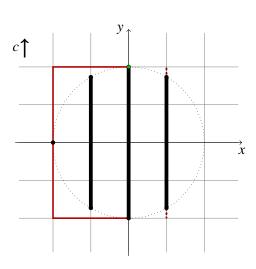
• Solve $LP(-\infty, 0)$.

• We get optimum (0, 2).

Lifted LP Algorithm _____

Computational Results

Correcting Integer Feasible Solutions is Not Enough



max v $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

max y x, y

x, y

$$(x,y) \in [-2,2]^2$$
 (LP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

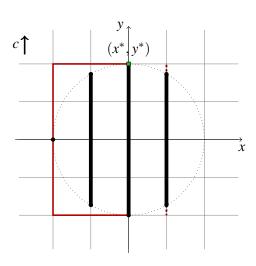
Solution 1:

- Branch: $x \le 0 \lor x \ge 1$.
- Solve $LP(-\infty, 0)$.
- We get optimum (0, 2).

Computational Results

Final Remarks

Correcting Integer Feasible Solutions is Not Enough



max v $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

max y x, y

x, y

$$(x, y) \in [-2, 2]^2$$
 (LP)

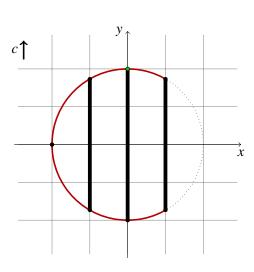
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Solution 1:

- Branch: $x \le 0 \lor x \ge 1$.
- Solve $LP(-\infty, 0)$.
- We get optimum (0, 2).

Computational Results

Correcting Integer Feasible Solutions is Not Enough



max v $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

max y x, y

x, y

$$(x,y) \in [-2,2]^2$$
 (LP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Solution 2:

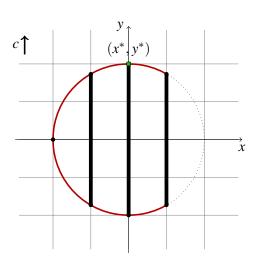
• Solve $NLP(-\infty, 1)$.

• We get optimum (0, 2).

Computational Results

Final Remarks

Correcting Integer Feasible Solutions is Not Enough



max v $(x, y) \in \mathcal{B}^2(2)$ (MINLP) $x \in \mathbb{Z}$

max y x, y

x, y

 $(x, y) \in [-2, 2]^2$ (LP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Solution 2:

- Solve $NLP(-\infty, 1)$.
- We get optimum (0,2).

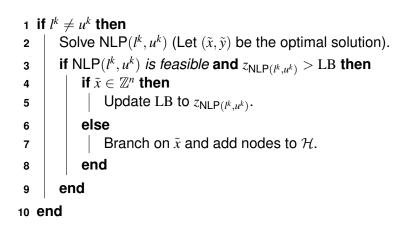
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

```
1 Solve LP(l^k, u^k) (Let (x^*, y^*) be the optimal solution).
```

```
2 if LP(l^k, u^k) is feasible and z_{LP(l^k, u^k)} > LB then
       if x^* \in \mathbb{Z}^n then
 3
            Solve NLP(x^*).
 4
            if NLP(x^*) is feasible and z_{NLP(x^*)} > LB then
 5
                Update LB to z_{NLP(x^*)}.
 6
 7
            end
            Extra Steps
 8
9
       else
            Branch on x^* and add nodes to \mathcal{H}.
10
11
       end
12 end
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

$(LB, \mathcal{H}) :=$ ProcessNode $(l^k, u^k, LB, \mathcal{H})$ Final Version



Lifted LP Algorithm

Computational Results

Final Remarks

Mixed Integer Conic Quadratic Programming Problems

.

$$z_{\mathsf{MICP}} := \max_{x,y} \quad cx + dy$$
s.t.
$$Dx + Ey \le f$$

$$(x, y) \in \mathcal{CC}_i \quad i \in \mathcal{I} \quad (\mathsf{MICP})$$

$$(x, y) \in \mathbb{R}^{n+p}$$

$$x \in \mathbb{Z}^n$$

• CC_i is a conic quadratic constraint of the form

 $\mathcal{CC} := \{ (x, y) \in \mathbb{R}^{n+p} : ||Ax + By + \delta||_2 \le ax + by + \delta_0 \}$

 Also let CP be the continuous relaxation obtained by eliminating *x* ∈ Zⁿ.

Lifted LP Algorithm

Computational Results

Final Remarks

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Ben-Tal Nemirovski Polyhedral Relaxation of CP

$$z_{\mathsf{LP}(\varepsilon)} := \max_{x,y,v} \quad cx + dy$$

s.t.
$$Dx + Ey \le f \qquad (\mathsf{LP}(\varepsilon))$$

$$(x, y, v) \in \mathcal{P}(\mathcal{CC}_i, \varepsilon) \quad i \in \mathcal{I}$$

$$(x, y, v) \in \mathbb{R}^{n+p+q},$$

P(CC_i, ε) polyhedron with O((n + p) log(1/ε)) variables and constraints.

.

Lifted LP Algorithm

Computational Results

Final Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Implementation of Lifted LP Branch-and-Bound Algorithm: $LP(\varepsilon)$ -BB

- Using a version of the Ben-Tal Nemirovski relaxation introduced by Glineur.
- Implemented by modifying CPLEX 10's MILP solver.
- C++, llog Concert Technology. Branch, incumbent and heuristic callbacks.
- $\varepsilon = 0.01$ was selected after calibration experiments.

Computational Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Computational Experiments

- Dual 2.4GHz Xeon workstation with 2GB of RAM running Linux Kernel 2.4.
- LP(ε) -BB v/s CPLEX 10's MIQCP solver and Bonmin's I-BB, I-QG and I-Hyb.
- Test set: Portfolio optimization problems with cardinality constraints (Ceria and Stubbs, 2006; Lobo et al., 1998, 2007).

S

Computational Results

Problem 1: Classical

āy	
$2^{1/2}y _2 \le \sigma$	
$\sum_{j=1}^{n} y_j = 1$	
$y_j \leq x_j$	$\forall j \in \{1,\ldots,n\}$
$\sum_{j=1}^n x_j \le K$	
$x \in \{0, 1\}$	$\}^n$
$y \in \mathbb{R}^n_+$	
	$2^{1/2} y _2 \le \sigma$ $\sum_{j=1}^n y_j = 1$ $y_j \le x_j$ $\sum_{j=1}^n x_j \le K$ $x \in \{0, 1\}$

- y fraction of the portfolio invested in each of n assets.
- ā expected returns of assets.
- $Q^{1/2}$ positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

S.

Lifted LP Algorithm

Computational Results

Problem 2 : Shortfall

$\max_{x,y}$		āy				
s.t.						
	$ Q^{1/2}y $	$ _2 \leq$	σ			
	$\sum_{j=1}^{n}$	$y_j =$	1			
		$y_j \leq $	x_j	$\forall j \in$	$\{1,\ldots,$	n}
	$\sum_{j=1}^{n}$	$x_j \leq$	Κ			
		$x \in C$	$\{0,1\}'$	n		
		$y \in \overline{X}$	\mathbb{R}^n_+			

- y fraction of the portfolio invested in each of n assets.
- ā expected returns of assets.
- $Q^{1/2}$ positive semidefinite square root of the covariance matrix Q of returns.
- K maximum number of assets to hold.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Computational Results

 $\{1,2\}$

Problem 2 : Shortfall

āy

 $\max_{x,y}$

s.t.

$$|Q^{1/2}y||_2 \le \frac{\bar{a}y - W_i^{low}}{\Phi^{-1}(\eta_i)} \qquad i \in$$

$$\sum_{j=1}^{n} y_j = 1$$
$$y_j \le x_j \qquad \forall j \in \{1, \dots, n\}$$

 $\sum_{j=1}^{n} x_j \le K$ $x \in \{0, 1\}^n$ $y \in \mathbb{R}^n_+$

- *y* fraction of the portfolio invested in each of *n* assets.
- \bar{a} expected returns of assets.
- $Q^{1/2}$ positive semidefinite square root of the covariance matrix Q of returns.
- *K* maximum number of assets to hold.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

• Approximation of $\operatorname{Prob}(\bar{a}y \ge W_i^{low}) \ge \eta_i$

Problem 3 : Robust

- max r x, y, rs.t. $||Q^{1/2}y||_2 < \sigma$ $\alpha ||\mathbf{R}^{1/2}\mathbf{v}||_2 < \bar{a}\mathbf{v} - r$ $\sum y_j = 1$ $y_i \leq x_i \qquad \forall j \in \{1, \ldots, n\}$ $\sum_{j=1} x_j \le K$ $x \in \{0, 1\}^n$ $y \in \mathbb{R}^n_+$
- y fraction of the portfolio invested in each of n assets.
- ā expected returns of assets.
- $Q^{1/2}$ positive semidefinite square root of the covariance matrix Q of returns.
- *K* maximum number of assets to hold.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Robust version from uncertainty in \bar{a} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Instance Data

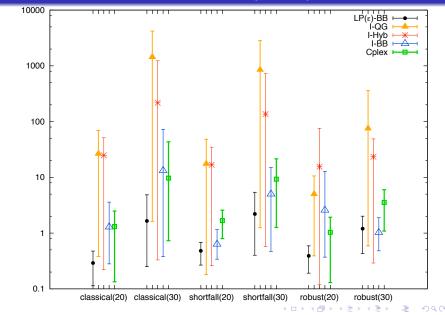
- Maximum number of stocks K = 10.
- Maximum risk $\sigma = 0.2$.
- Shortfall constraints: $\eta_1 = 80\%$, $W_1^{low} = 0.9$, $\eta_2 = 97\%$, $W_2^{low} = 0.7$ (Lobo et al., 1998, 2007).
- Data generation for Classical and Shortfall from S&P 500 data following Lobo et al. (1998), (2007).
- Data generation for Robust from S&P 500 data following Ceria and Stubbs (2006).
- Riskless asset included for Shortfall.
- Random selection of *n* stocks out of 462.
- 100 instances for $n \in \{20, 30, 40, 50\}$, 10 for $n \in \{100, 200\}$.

Lifted LP Algorithm

Computational Results

Final Remarks

Average Solve Times [s] for $n \in \{20, 30\}$



Computational Results

	So	lve	Time	Ra	tio t	o Best	
Solver	Α	В	С	Best	Α	В	С
Instance 1	2	8	16	2	1	4	8

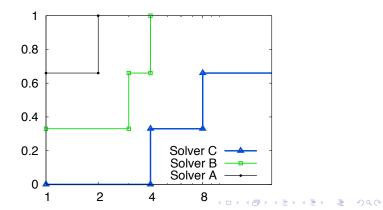
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	Solve Time					tio t	o Best
Solver	A	В	С	Best	А	В	С
Instance 1	2	8	16	2	1	4	8
Instance 2	10	5	20	5	2	1	4
Instance 3	100	300	-	100	1	3	∞

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	Solve Time					tio t	o Best
Solver	Α	В	С	Best	Α	В	С
Instance 1	2	8	16	2	1	4	8
Instance 2	10	5	20	5	2	1	4
Instance 3	100	300	-	100	1	3	∞

	Solve Time					tio t	o Best
Solver	Α	В	С	Best	Α	В	С
Instance 1	2	8	16	2	1	4	8
Instance 2	10	5	20	5	2	1	4
Instance 3	100	300	-	100	1	3	∞

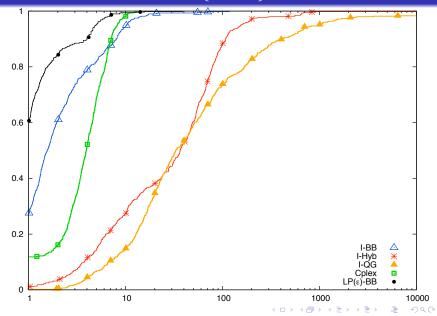


Lifted LP Algorithm

Computational Results

Final Remarks

Performance Profile for $n \in \{20, 30\}$



Lifted LP Algorithm **Computational Results** 000000000000 Average Solve Times [s] for $n \in \{40, 50\}$ 10000 TTT 1111 TTT ПП LP(ε)-BB Î-Hyb I-ŔB Cplex | 1000 100 10 0.1 classical(40) classical(50) shortfall(40) shortfall(50) robust(40) robust(50)

1 9 9 9

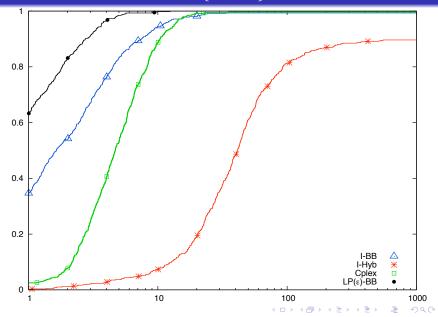
<ロ> <=> <=> <=> <=> <=> <==> <==<

Lifted LP Algorithm

Computational Results

Final Remarks

Performance Profile for $n \in \{40, 50\}$

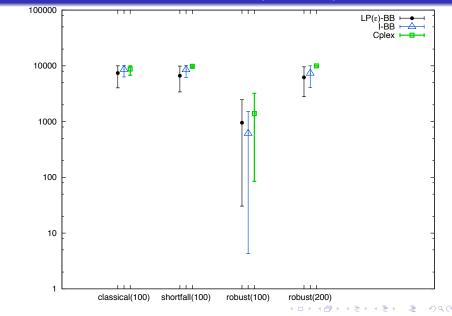


Lifted LP Algorithm

Computational Results

Final Remarks

Average Solve Times [s] for $n \in \{100, 200\}$

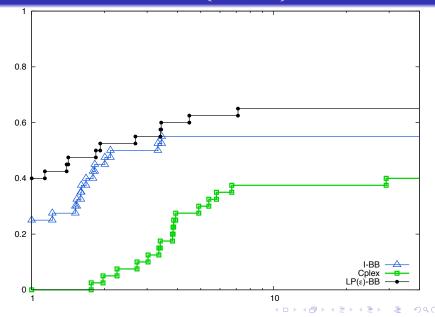


Lifted LP Algorithm

Computational Results

Final Remarks

Performance Profile for $n \in \{100, 200\}$



Lifted LP Algorithm

Computational Results

Final Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Total Number of Nodes and Calls to Relaxations for Small Instances

B-and-b nodes I-QG	3580051
B-and-b nodes I-Hyb	328316
B-and-b nodes I-BB	68915
B-and-b nodes CPLEX	85957
B-and-b nodes $LP(\varepsilon)$ -BB	57933
$LP(\varepsilon)$ -BB calls to $CP(l^k, u^k)$	2305
$LP(\varepsilon)$ -BB calls to $CP(x^*)$	7810

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

Final Remarks

- Polyhedral relaxation algorithm for MINLP:
 - Based on a lifted polyhedral relaxation.
 - Branches on integer feasible solutions.
 - "Does not update the relaxation".
- Algorithm for the conic quadratic case:
 - Based on a lifted polyhedral relaxation by Ben-Tal and Nemirovski.
 - Implemented by modifying CPLEX MILP solver.
 - Significantly outperforms other methods for portfolio optimization problems.