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“Convex” Mixed Integer Non-Linear Programming
(MINLP) Problems

zMINLP := max
x,y

cx + dy

s.t. (x, y) ∈ C ⊂ Rn+p (MINLP)
x ∈ Zn

C is a convex compact set.
Advanced algorithms and Software:

NLP based branch-and-bound algorithms (Borchers and Mitchell,

1994, Gupta and Ravindran, 1985, Leyffer 2001 and Stubbs and Mehrotra, 1999,. . .)
Polyhedral relaxation based algorithms (Duran and Grossmann, 1986,

Fletcher and Leyffer, 1994, Geoffrion, 1972,Quesada and Grossmann, 1992, Westerlund and

Pettersson, 1995,Westerlund et al., 1994,. . .)
CPLEX 9.0+ (ILOG, 2005), Bonmin (Bonami et al., 2005), FilMINT
(Abhishek et al., 2006), . . .
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s.t. (x, y) ∈ C ⊂ Rn+p (MINLP)
x ∈ Zn

C is a convex compact set.
Advanced algorithms and Software:

NLP based branch-and-bound algorithms (Borchers and Mitchell,

1994, Gupta and Ravindran, 1985, Leyffer 2001 and Stubbs and Mehrotra, 1999,. . .)
Polyhedral relaxation based algorithms (Duran and Grossmann, 1986,

Fletcher and Leyffer, 1994, Geoffrion, 1972,Quesada and Grossmann, 1992, Westerlund and

Pettersson, 1995,Westerlund et al., 1994,. . .)
CPLEX 9.0+ (ILOG, 2005), Bonmin (Bonami et al., 2005), FilMINT
(Abhishek et al., 2006), . . .

Polyhedral relaxation algorithms try to exploit the
technology for Mixed Integer Linear Programming
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Polyheral Relaxation of Convex Sets

C = Bd(r), d = 2, ε = 0.41

r
(1

+
ε)r

It is known that at least
exp(d/(2(1 + ε))2) facets are
needed in the original space.
Ben-Tal and Nemirovski
(2001) approximate Bd(r) as
the projection of a polyhedron
with O(d log(1/ε)) variables
and constraints.
Glineur (2000) refined the
approximation and showed
that it is algorithmically and
computationally “impractical”
for (pure continuous) conic
quadratic optimization.
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Polyheral Relaxation of Convex Sets

C = Bd(r), d = 2, ε = 0.08

r

(1
+

ε)r

It is known that at least
exp(d/(2(1 + ε))2) facets are
needed in the original space.
Ben-Tal and Nemirovski
(2001) approximate Bd(r) as
the projection of a polyhedron
with O(d log(1/ε)) variables
and constraints.
Glineur (2000) refined the
approximation and showed
that it is algorithmically and
computationally “impractical”
for (pure continuous) conic
quadratic optimization.
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Using Ben-Tal Nemirovski Approximation to Exploit
Mixed Integer Linear Programming Solver Technology

Lifted linear programming relaxation: Polyhedron
P ⊂ Rn+p+q such that

C ⊂ {(x, y) ∈ Rn+p : ∃ v ∈ Rq s.t. (x, y, v) ∈ P} ≈ C

Use a state of the art MILP solver to solve

max
x,y,v

cx + dy

s.t. (x, y, v) ∈ P (MILP)
x ∈ Zn

Problem: Obtained solution might not even be feasible for
MINLP
Solution: Modify Solve of MILP
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Idea: Simulate NLP Branch-and-Bound

Problem solved in NLP B&B node (lk, uk) ∈ Z2n is:

zNLP(lk,uk) := max
x,y

cx + dy

s.t. (x, y) ∈ C ⊂ Rn+p (NLP(lk, uk))

lk ≤ x ≤ uk

Problem solved by state of the art MILP solver is:

zLP(lk,uk) := max
x,y,v

cx + dy

s.t. (x, y, v) ∈ P (LP(lk, uk))

lk ≤ x ≤ uk



Introduction Lifted LP Algorithm Computational Results Final Remarks

Idea: Simulate NLP Branch-and-Bound

Problem solved in NLP B&B node (lk, uk) ∈ Z2n is:

zNLP(lk,uk) := max
x,y

cx + dy

s.t. (x, y) ∈ C ⊂ Rn+p (NLP(lk, uk))

lk ≤ x ≤ uk

Problem solved by state of the art MILP solver is:

zLP(lk,uk) := max
x,y,v

cx + dy

s.t. (x, y, v) ∈ P (LP(lk, uk))

lk ≤ x ≤ uk

Advantages of second subproblem:
Algorithmic Advantage: Simplex has warm starts.
Computational Advantage: Use MILP solver’s technology.
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Idea: Simulate NLP Branch-and-Bound

Problem solved in NLP B&B node (lk, uk) ∈ Z2n is:

zNLP(lk,uk) := max
x,y

cx + dy

s.t. (x, y) ∈ C ⊂ Rn+p (NLP(lk, uk))

lk ≤ x ≤ uk

Problem solved by state of the art MILP solver is:

zLP(lk,uk) := max
x,y,v

cx + dy

s.t. (x, y, v) ∈ P (LP(lk, uk))

lk ≤ x ≤ uk

Issues:
1 Integer feasible solutions may be infeasible for C.
2 Need to be careful when fathoming by integrality.
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First Issue: Correcting Integer Feasible Solutions

Let (x∗, y∗, v∗) ∈ P such that x∗ ∈ Zn, but (x∗, y∗) /∈ C.
We reject (x∗, y∗, v∗) and try to correct it using:

zNLP(x∗) := max
y

cx∗ + dy

s.t.

(x∗, y) ∈ C ⊂ Rn+p. (NLP(x∗))

This can be done for solutions found by heuristics, at
integer feasible nodes, etc.
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Second Issue: Correct Fathoming by Integrality

Suppose that for a node (lk, uk) with lk 6= uk we have that
the solution (x∗, y∗, v∗) of LP(lk, uk) is such that x∗ ∈ Zn

If (x∗, y∗) ∈ C then (x∗, y∗) is also the optimal for NLP(lk, uk)
and we can fathom by integrality.
If (x∗, y∗) /∈ C it is not sufficient to solve NLP(x∗):

Problem: Corrected solution is not necessarily optimal for
NLP(lk, uk).
Solution: Solve NLP(lk, uk) and process node according to
its solution.
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Branch-and-Bound Main Loop

Set global lower bound LB := −∞.1

Set l0i := −∞, u0
i := +∞ for all i ∈ {1, . . . , n}.2

Set node list H := {(l0, u0)}.3

while H 6= ∅ do4

Select and remove a node (lk, uk) ∈ H.5

ProcessNode(lk, uk).6

end7
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(LB,H) :=ProcessNode(lk, uk, LB,H)

Solve LP(lk, uk) (Let (x∗, y∗) be the optimal solution).1

if LP(lk, uk) is feasible and zLP(lk,uk) > LB then2

if x∗ ∈ Zn then3

Solve NLP(x∗).4

if NLP(x∗) is feasible and zNLP(x∗) > LB then5

Update LB to zNLP(x∗).6

end7

Extra Steps8

else9

Branch on x∗ and add nodes to H.10

end11

end12
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(LB,H) :=ProcessNode(lk, uk, LB,H)

if lk 6= uk then1

Solve NLP(lk, uk) (Let (x̃, ỹ) be the optimal solution).2

if NLP(lk, uk) is feasible and zNLP(lk,uk) > LB then3

if x̃ ∈ Zn then4

Update LB to zNLP(lk,uk).5

else6

Branch on x̃ and add nodes to H.7

end8

end9

end10
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Computational Experiments

Implementation of Lifted LP B&B Algorithm ( LP(ε) -BB ):
Using Ben-Tal Nemirovski relaxation from Glineur (2000).
Implemented by modifying CPLEX 10’s MILP solver using
branch, incumbent and heuristic callbacks.
ε = 0.01 was selected after calibration experiments.

Portfolio optimization problems with cardinality constraints
(Ceria and Stubbs, 2006; Lobo et al., 1998, 2007)
Computer and solvers:

Dual 2.4GHz Xeon Linux workstation with 2GB of RAM.
LP(ε) -BB v/s CPLEX 10’s MIQCP solver and Bonmin’s
I-BB, I-QG and I-Hyb.
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Problem 1: Classical

max
x,y

āy

s.t.

||Q1/2y||2 ≤ σ
n∑

j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
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Problem 2 : Shortfall

max
x,y

āy

s.t.

||Q1/2y||2 ≤ σ
n∑

j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
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Problem 2 : Shortfall

max
x,y

āy

s.t.

||Q1/2y||2 ≤
āy−W low

i
Φ−1(ηi)

i ∈ {1, 2}

n∑
j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
Approximation of
Prob(āy ≥ W low

i ) ≥ ηi
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Problem 3 : Robust

max
x,y,r

r

s.t.

||Q1/2y||2 ≤ σ

α||R1/2y||2 ≤ āy− r
n∑

j=1

yj = 1

yj ≤ xj ∀j ∈ {1, . . . , n}
n∑

j=1

xj ≤ K

x ∈ {0, 1}n

y ∈ Rn
+

y fraction of the portfolio
invested in each of n
assets.
ā expected returns of
assets.
Q1/2 positive semidefinite
square root of the
covariance matrix Q of
returns.
K maximum number of
assets to hold.
Robust version from
uncertainty in ā.
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Instance Data

Maximum number of stocks K = 10.
Maximum risk σ = 0.2.
Shortfall constraints: η1 = 80%, W low

1 = 0.9, η2 = 97%,
W low

2 = 0.7 (Lobo et al., 1998, 2007).
Data generation for Classical and Shortfall from S&P 500
data following Lobo et al. (1998), (2007).
Data generation for Robust from S&P 500 data following
Ceria and Stubbs (2006).
Riskless asset included for Shortfall.
Random selection of n stocks out of 462.
100 instances for n ∈ {20, 30, 40, 50}, 10 for n ∈ {100, 200}.



Introduction Lifted LP Algorithm Computational Results Final Remarks

Average Solve Times [s] for n ∈ {20, 30}

 0.1

 1

 10

 100

 1000

 10000

  classical(20)   classical(30)   shortfall(20)   shortfall(30)   robust(20)   robust(30) 

LP(!)-BB
I-QG
I-Hyb
I-BB

Cplex



Introduction Lifted LP Algorithm Computational Results Final Remarks

Performance Profile for n ∈ {20, 30}
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Average Solve Times [s] for n ∈ {40, 50}
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Performance Profile for n ∈ {40, 50}
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Average Solve Times [s] for n ∈ {100, 200}
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Performance Profile for n ∈ {100, 200}
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Total Number of Nodes and Calls to Relaxations for
Small Instances

I-QG (B&B nodes) 3,580,051
I-Hyb (B&B nodes) 328,316
I-BB (B&B nodes) 68,915
CPLEX (B&B nodes) 85,957
LP(ε) -BB (B&B nodes) 57,933
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Total Number of Nodes and Calls to Relaxations for
Small Instances

I-QG (B&B nodes) 3,580,051
I-Hyb (B&B nodes) 328,316
I-BB (B&B nodes) 68,915
CPLEX (B&B nodes) 85,957
LP(ε) -BB (B&B nodes) 57,933
NLP(lk, uk) ( LP(ε) -BB calls ) 2,305
NLP(x∗) ( LP(ε) -BB calls ) 7,810
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Final Remarks

Polyhedral relaxation algorithm for “convex” MINLP:

Based on a lifted polyhedral relaxation.
“Does not update the relaxation“.

Algorithm for the conic quadratic case:
Characteristics:

Based on a lifted polyhedral relaxation by Ben-Tal and
Nemirovski.
Implemented by modifying CPLEX MILP solver.

Advantages:
Can outperform other methods for portfolio optimization
problems.
Shows that Ben-Tal and Nemirovski approximation can be
computationally “practical”.
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