Mixed Integer Gomory Cuts for Quadratic Programming: The Power of Extended Formulations?

Juan Pablo Vielma Massachusetts Institute of Technology

EURO - INFORMS MMXIII July 2013 – Rome, Italy

Outline

Introduction: Split Cuts
Nonlinear Split Cuts
Conic MIR: Extended Formulations
Strength Comparison
Summary

Split Disjunctions and Split Cuts

Split Disjunctions and Split Cuts

3/13

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction $L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \leq \pi_0 \}$ $G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \geq \pi_1 \}$

• $L_{\pi_0}^{\pi}$ $f_{J}^{\gamma\pi}$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

3/13

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

$$C_{\pi,\pi_0} := \operatorname{conv} \left(C \cap (L_{\pi_0}^{\pi} \cup G_{\pi_1}^{\pi}) \right)$$

 $\pi_1 = \pi_0 + 1$

Split Disjunctions and Split Cuts

Split Disjunction

$$L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$$
$$G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$$

 $C_{\pi,\pi_0} := \operatorname{conv}(C \cap (L_{\pi_0}^{\pi} \cup G_{\pi_1}^{\pi}))$

 $= \{x : g_i(x) \leq 0, i \in I,$

Split Disjunction

$$L_{\pi_{0}}^{\pi} = \{x \in \mathbb{R}^{n} : \langle \pi, x \rangle \leq \pi_{0} \}$$

$$G_{\pi_{1}}^{\pi} = \{x \in \mathbb{R}^{n} : \langle \pi, x \rangle \geq \pi_{1} \}$$

$$C_{\pi,\pi_{0}} := \operatorname{conv} \left(C \cap (L_{\pi_{0}}^{\pi} \cup G_{\pi_{1}}^{\pi}) \right)$$

$$= \{x : g_{i}(x) \leq 0, i \in I,$$

$$\pi_{1} = \pi_{0} + 1 \quad h_{j}(x) \leq 0, j \in J \}$$

$$Split Cuts$$

Split Disjunctions and Split Cuts

Split Disjunctions and Split Cuts

Split Disjunction • $L_{\pi_0}^{\pi}$ $L_{\pi_0}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \le \pi_0 \}$ $G_{\pi_1}^{\pi} = \{ x \in \mathbb{R}^n : \langle \pi, x \rangle \ge \pi_1 \}$ **Elementary Splits:** $\pi = e^{i}$ $x_i \leq \pi_0 \quad \lor \quad x_i \geq \pi_0 + 1$ $C_{\pi,\pi_0} := \operatorname{conv}(C \cap (L_{\pi_0}^{\pi} \cup G_{\pi_1}^{\pi}))$ $= \{x : g_i(x) \le 0, i \in I,$ $\pi_1 = \pi_0 + 1 \quad h_j(x) \le 0, \ j \in J \bigstar$ Split Cuts

Split Cuts for Simplicial Cones

Formulas: (MIG: Gomory 1960 and MIR: Nemhauser and Wolsey 1988)

 $P := \{ x \in \mathbb{R}^n : Ax \le b \},\$ $\pi_0 < \pi^T A^{-1} b < \pi_1$ $\det(A) \neq 0$ $P_{\pi,\pi_0} := \{ x \in \mathbb{R}^n : Ax \le b,$ $a^T x \le b$

Non-linear Split Cuts

Split Cuts for Quadratic Cones

Formulas: (Modaresi, Kılınç, V. 2011)

 $C(B,c) := \left\{ (x,t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|B(x-c)\|_2 \le t_0 \right\}$

$$\{(x,t_0) \in \mathbb{R}^{n+1} : \langle \pi, x \rangle \le \pi_0\}$$
$$\{(x,t_0) \in \mathbb{R}^{n+1} : \langle \pi, x \rangle \ge \pi_1\}$$

$$egin{aligned} C(B,c)_{\pi,\pi_0} &= \{(x,t_0) \in \mathbb{R}^n imes \mathbb{R} \ & \|B(x-c)\|_2 \leq t_0, \ & \|Dx-d\|_2 \leq t_0 \} \end{aligned}$$

(also Atamturk and Narayanan 2010, Andersen and Jensen 2013)

Non-linear Split Cuts

Split Cuts for Quadratic Cones

- Formulas: (Modaresi, Kılınç, V. 2011)

 $C(B,c) := \left\{ (x,t_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|B(x-c)\|_2 \le t_0 \right\}$ $\left\{ (x,t_0) \in \mathbb{R}^{n+1} : \langle \pi, x \rangle \le \pi_0 \right\}$

$$\left\{ (x, t_0) \in \mathbb{R}^{n+1} : \langle \pi, x \rangle \ge \pi_1 \right\}$$

$$egin{aligned} C(B,c)_{\pi,\pi_0} &= \{(x,t_0) \in \mathbb{R}^n imes \mathbb{R} \ & \|B(x-c)\|_2 \leq t_0, \ & \|Dx-d\|_2 \leq t_0 \} \end{aligned}$$

(also Atamturk and Narayanan 2010, Andersen and Jensen 2013)

Non-linear Split Cuts

Split Cuts for Paraboloids

Formulas: (Modaresi, Kılınç, V. 2012)

$$Q(B,c) := \left\{ (x,s_0) \in \mathbb{R}^n \times \mathbb{R} : \\ \|B(x-c)\|_2^2 \le s_0 \right\}$$

$$Q := Q(B, c)$$

$$egin{aligned} Q_{\pi,\pi_0} &= \{(x,s_0) \in \mathbb{R}^n imes \mathbb{R} \ & \|B(x-c)\|_2^2 \leq s_0, \ & \|D(x-d)\|_2^2 \leq s_0 + \langle a,x
angle + b \} \ & x_1 \ & 0.5 \ & y_1 \ & y_1$$

0.0

 $t_{0\ 0.5}$

Stronger than "conic" cut for Shortest Vector.

Conic MIR and Extended Formulation

Atamturk and Narayanan 2007, Modaresi, Kılınç, V. 2011

Conic MIR and Extended Formulation

$$Q(B,c) := \{ (x, s_0) \in \mathbb{R}^n \times \mathbb{R} : \|B(x-c)\|_2^2 \le s_0 \}$$

Extended Formulation: $(x, t, s_0) \in \mathbb{Z}^n \times \mathbb{R}^n \times \mathbb{R}_+$ $|v| \leq t$

$$|B(x-c)| \le t$$
 \longleftarrow Linear Part
 $||t||_2^2 \le s_0 \longleftarrow$ Nonlinear Part

Conic MIR = Split cut for linear part $f := \pi^T c - \pi_0 \in (0, 1)$ $L := \{(x, t) \in \mathbb{R}^n \times \mathbb{R}^n : |B(x - c)| \le t\}$ $L_{\pi, \pi_0} := \{(x, t) : \frac{|B(x - c)| \le t}{(1 - 2f)(\pi^T x - \pi_0) + f \le |B^{-T}\pi|^T t}\}$

Atamturk and Narayanan 2007, Modaresi, Kılınç, V. 2011

 $|v_i| \le t_i \,\forall i$

Non-linear Effect of Linear Cut

$$MIR_{\pi,\pi_0}^2 := \left\{ (x,t,s_0) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} : \frac{(x,t) \in L_{\pi,\pi_0}}{\|t\|_2^2 \le s_0} \right\}$$

$$Q_{\pi,\pi_0} \subseteq \operatorname{Proj}_{(x,s_0)} \left(MIR_{\pi,\pi_0}^2 \right)$$
 Equality for $B = I$ and $\pi = e^i$.
Containment can be strict.

Non-linear Effect of Linear Cut

$$MIR_{\pi,\pi_0}^2 := \left\{ (x,t,s_0) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} : \begin{array}{l} (x,t) \in L_{\pi,\pi_0} \\ \|t\|_2^2 \le s_0 \end{array} \right\}$$

$$Q_{\pi,\pi_0} \subseteq \operatorname{Proj}_{(x,s_0)} \left(MIR_{\pi,\pi_0}^2 \right)$$

Equality for B = I and $\pi = e^i$. Containment can be strict.

For
$$B = I$$

$$\operatorname{Proj}_{(x,s_0)} \left(\bigcap_{i=1}^n MIR_{e^i,\lfloor c_i \rfloor}^2 \right) \subseteq \bigcap_{i=1}^n Q_{e^i,\lfloor c_i \rfloor}$$

Strict containment for n = 2 and c = (1/2, 1/2).

MIR CVP Bound > Split CVP Bound

For B = I and $c_i = 1/2$

$$n/4 = \min_{x} \left\{ \|x - c\|_{2}^{2} : x \in \mathbb{Z}^{n} \right\}$$
$$= \min_{x, s_{0}} \left\{ s_{0} : (x, s_{0}) \in \operatorname{Proj}_{(x, s_{0})} \left(\bigcap_{i=1}^{n} MIR_{e^{i}, \lfloor c_{i} \rfloor}^{2} \right) \right\}$$

$$1/4 = \min_{x,s_0} \left\{ s_0 : (x,s_0) \in \bigcap_{(\pi,\pi_0) \in \mathbb{Z}^n \times \mathbb{Z}} Q_{\pi,\pi_0} \right\}$$

CMIR Bound

$$n/4 = \min_{x,s_0} \left\{ s_0 : (x,s_0) \in \operatorname{Proj}_{(x,s_0)} \left(\bigcap_{i=1}^n MIR_{e^i,\lfloor c_i \rfloor}^2 \right) \right\}$$

$$\bigcap_{i=1}^{n} MIR^{2} = \begin{cases} (x, t, s_{0}) : (1 - 2f) (x_{i} - \lfloor 1/2 \rfloor) + f \leq t_{i} & \forall i, \\ \|t\|_{2}^{2} \leq s_{0} \end{cases}$$

$$(x_{i} - 1/2| \leq t_{i} & \forall i, \end{cases}$$

$$= \left\{ (x, t, s_0) : \begin{array}{ccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ \|t\|_2^2 \le s_0 \end{array} \forall i, \right\}.$$

$$f = \pi^T c - \pi_0 = 1/2$$

No Dominance Between Cuts

Strength

Strength

Strength

Strength

GAP Closed [%] ≈ 2 n Cuts

Strength

Nonlinear Split Conic MIR

Summary and Open Questions

- Non-linear Split Cuts
 - Too Expensive.
 - Solution: Non-linear extended formulation.
- Computationally:
 - Non-linear extended formulation helps by itself.
 - Neither cut seems to help.
 - Do you have difficult quadratic MIP problems?