Encodings in Mixed Integer Linear Programming

Juan Pablo Vielma

Sloan School of Business, Massachusetts Institute of Technology

Universidad de Chile, December, 2013 – Santiago, Chile.

Mixed Integer Binary Formulations

MIP Formulations = Model Finite Alternatives

Textbook Formulation

Formulation for f(x)=z

$$\sum_{i=1}^{4} d_i \lambda_i = x, \qquad \sum_{i=1}^{4} f(d_i) \lambda_i = z$$

$$\sum_{i=1}^{4} \lambda_i = 1, \qquad \lambda_i \ge 0$$

$$\sum_{i=1}^{3} y_i = 1, \qquad y_i \in \{0, 1\}$$

$$\lambda_1 \le y_1, \qquad \lambda_2 \le y_1 + y_2$$

$$\lambda_3 \le y_2 + y_3, \quad \lambda_4 \le y_3$$

Textbook Formulation

Formulation for f(x)=z

$$\sum_{i=1}^{4} d_{i}\lambda_{i} = x, \qquad \sum_{i=1}^{4} f(d_{i})\lambda_{i} = z$$

$$\sum_{i=1}^{4} \lambda_{i} = 1, \qquad \lambda_{i} \ge 0$$

$$\sum_{i=1}^{3} y_{i} = 1, \qquad \lambda_{i} \ge 0$$

$$\lambda_{1} \le y_{1}, \qquad \lambda_{2} \le y_{1} + y_{2}$$

$$\lambda_{3} \le y_{2} + y_{3}, \quad \lambda_{4} \le y_{3}$$

Better Formulation

Formulation for f(x)=z

$$d_0 + \sum_{i=1}^{3} (d_{i+1} - d_i)\delta_i = x,$$

$$f(d_0) + \sum_{i=1}^{3} (f(d_{i+1}) - f(d_i))\delta_i = z$$
$$\delta_3 \le y_2 \le \delta_2 \le y_1 \le \delta_1$$
$$y_i \in \{0, 1\}$$

Better Formulation

Formulation for
$$f(x)=z$$

$$d_0 + \sum_{i=1}^3 (d_{i+1} - d_i) \mathcal{E}_i = x,$$

$$f(d_0) + \sum_{i=1}^3 (f(d_i)) \delta_i = z$$

$$\delta_i \leq y_2 \leq \delta_2 \leq y_1 \leq \delta_1$$

$$y_i \in \{0, 1\}$$

Solve Times in CPLEX 11

Transportation Problems in V., Ahmed and Nemhauser '10.

Solve Times in CPLEX 11

Transportation Problems in V., Ahmed and Nemhauser '10.

Solve Times in CPLEX 11

Transportation Problems in V., Ahmed and Nemhauser '10.

Outline

- MIP v/s constraint branching.
- "Have your cake and eat it too" formulation
 - Step 1: Encoding alternatives.
 - Step 2: Combine with strong "standard" formulation.
- Summary, Extensions and More.

min

s.t.

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

8/29

 $\min |x|$ s.t.

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

 $\min |x|$

s.t.

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

$$IP_{opt} = 1, LP_{opt} = 0$$

Solve by binary Branch-and-Bound:

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

$$IP_{opt} = 1, LP_{opt} = 0$$

 \min | x

s.t.

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

 $IP_{opt} = 1, LP_{opt} = 0$

Solve by binary Branch-and-Bound:

Branch on λ_2

 \mathbf{n}

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

Solve by binary Branch-and-Bound:

$$IP_{opt} = 1, LP_{opt} = 0$$

Branch on
$$\lambda_2$$

•
$$\lambda_2 = 1$$
 • Feasible with $|x| = 1$

min

s.t.

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

Solve by binary Branch-and-Bound:

$$IP_{opt} = 1, LP_{opt} = 0$$

Branch on
$$\lambda_2$$
 $\lambda_2 = 1 \rightarrow$ Feasible with $|x| = 1$

$$\lambda_2 = 1 \rightarrow \text{Feasible with } |x| = 1$$

•
$$\lambda_2 = 0 \to \text{Best Bound} = 0$$

 $IP_{opt} = 1, LP_{opt} = 0$

Solve by binary Branch-and-Bound:

Branch on
$$\lambda_2$$
 \longrightarrow $\lambda_2 = 1 \rightarrow$ Feasible with $|x| = 1$ $\lambda_2 = 0 \rightarrow$ Best Bound $\lambda_2 = 0$

Branch on $\lambda_2, \lambda_4, \lambda_5 \to \text{Best Bound} = 0$

Solve by binary Branch-and-Bound:

 $IP_{opt} = 1, LP_{opt} = 0$

Worst case: n/2 branches to solve

Solve by constraint B-and-B:

s.t.
$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

$$IP_{opt} = 1, LP_{opt} = 0$$

Solve by constraint B-and-B:

Branch on $\lambda_1 + \lambda_2$

s.t.
$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$IP_{opt} = 1, LP_{opt} = 0$$

 $\lambda \in \{0, 1\}^n$

min

s.t

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

 $IP_{opt} = 1, LP_{opt} = 0$

Solve by constraint B-and-B:

Branch on
$$\lambda_1 + \lambda_2$$
 \longrightarrow $\lambda_1 + \lambda_2 = 1 \rightarrow$ Feasible with $|x| = 1$

 \min

s.t

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

 $IP_{opt} = 1, LP_{opt} = 0$

Solve by constraint B-and-B:

Branch on
$$\lambda_1 + \lambda_2 = 0$$
 $\lambda_1 + \lambda_2 = 0$ Feasible with $|x| = 1$ $\lambda_1 + \lambda_2 = 0$ Feasible with $|x| = 1$

 \min | x

s.t

$$\sum_{i=1}^{n} \lambda_i \alpha_i = x$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\lambda \in \{0, 1\}^n$$

 $IP_{opt} = 1, LP_{opt} = 0$

Solve by constraint B-and-B:

Branch on
$$\lambda_1 + \lambda_2$$
 $\stackrel{\bullet}{\longleftarrow}$ $\lambda_1 + \lambda_2 = 1 \rightarrow$ Feasible with $|x| = 1$ $\lambda_1 + \lambda_2 = 0 \rightarrow$ Feasible with $|x| = 1$

Never more than one branch (2 nodes).

Constraint Branching is the Solution?

- Ryan and Foster, 1981.
- Discrete Alternatives: SOS1 branching of Beale and Tomlin 1970. Also SOS2 (B. and T, 70) and piecewise linear functions (Tomlin 1981).

• SOS1:
$$\sum_{i=1}^{t} \lambda_i = 1$$
 or $\sum_{i=1}^{t} \lambda_i = 0$ \updownarrow $\lambda_i = 0 \quad \forall i > t$ or $\lambda_i = 0 \quad \forall i \leq t$

 Problem: Need to re-implement advanced branching selection (e.g. pseudocost).

CPLEX 9: Basic SOS2
 branching implementation
 (graph from Nemhauser, Keha and V. '08)

CPLEX 9: Basic SOS2
 branching implementation
 (graph from Nemhauser, Keha and V. '08)

CPLEX 11: Improved SOS2
 branching implementation
 (graph from Nemhauser, Ahmed and V. '10)

Weak Integer

SOS2 Branching

Mystery Integer

CPLEX 9: Basic SOS2
 branching implementation
 (graph from Nemhauser, Keha and V. '08)

CPLEX 11: Improved SOS2
 branching implementation
 (graph from Nemhauser, Ahmed and V. '10)

Weak Integer

SOS2 Branching

Mystery Integer

Formulation Step 1: Encoding Alternatives

$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\sum_{i=1}^{n} b^i \lambda_i = y$$

$$\lambda \in \mathbb{R}_+^n$$

$$y \in \{0, 1\}^{\log_2 n}$$

$$\{b^i\}_{i=1}^n = \{0,1\}^{\log_2 n}$$

- Li and Lu 2009, Adams and Henry 2011, V. and Nemhauser 2008.
- Sommer, TIMS 1972.
- Log = Binary Encoding
- Other choices of $\{b^i\}_{i=1}^n$ lead to standard and incremental formulations

$$\sum_{i=1}^{n} \lambda_{i} = 1$$

$$\sum_{i=1}^{n} b^{i} \lambda_{i} = y$$

$$\lambda \in \mathbb{R}^{n}_{+}$$

$$y \in \{0, 1\}^{1}_{m}$$

$$\{b^i\}_{i=1}^n = \{0,1\}_{\mathbf{m}}^1$$

- Li and Lu 2009, Adams and Henry 2011, V. and Nemhauser 2008.
- Sommer, TIMS 1972.
- Log = Binary Encoding
- Other choices of $\{b^i\}_{i=1}^n$ lead to standard and incremental formulations

Unary Encoding

$$\lambda = y, \qquad \sum_{i=1}^{8} \lambda_i = 1,$$
$$\lambda \in \mathbb{R}^8, \ y \in \{0, 1\}^8$$

$$\updownarrow \lambda_i = y_i$$

Binary Encoding

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{pmatrix}
\lambda = y, \qquad
\sum_{i=1}^{8} \lambda_i = 1, \\
\lambda \in \mathbb{R}^8, y \in \{0, 1\}^3$$

Incremental Encoding

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \lambda = y, \qquad \sum_{i=1}^{8} \lambda_i = 1, \\ \lambda \in \mathbb{R}^8, \ y \in \{0, 1\}^7$$

$$\lambda = y, \qquad \sum_{i=1}^{8} \lambda_i = 1,$$
$$\lambda \in \mathbb{R}^8, \ y \in \{0, 1\}^7$$

$$y_1 \geq y_2 \geq \ldots \geq y_7$$

Best Bound = 0 unless:

$$y_i = 0 \quad \forall i$$

$$y_1 = y_2 = 0$$

Best Bound = 0 unless:

$$y_i = 0 \quad \forall i$$

Need $k = \log_2 n$ branches

$$y_1 = y_2 = 0$$

Best Bound = 1 if:

$$y_{i^*} = 0 \lor y_{i^*} = 1$$

Only need 1 branch!

Incremental

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lambda = y$$

Binary

$$\left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right) \lambda = y$$

Incremental

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lambda = y$$

SOS1 Branching

$$\begin{array}{c}
\lambda_1 = \lambda_2 = 0 \\
or \\
\lambda_3 = \lambda_4 = 0
\end{array}$$

Binary

$$\left(\begin{array}{ccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right) \lambda = y$$

Incremental

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lambda = y$$

SOS1 Branching

$$\begin{array}{c}
\lambda_1 = \lambda_2 = 0 \\
or \\
\lambda_3 = \lambda_4 = 0
\end{array}$$

Binary

$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \lambda = y$$

SOS1 Branching

$$\lambda_1 = \lambda_2 = 0$$

$$or$$

$$\lambda_3 = \lambda_4 = 0$$

Incremental

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lambda = y$$

SOS1 Branching

$$\begin{array}{c}
\lambda_1 = \lambda_2 = 0 \\
or \\
\lambda_3 = \lambda_4 = 0
\end{array}$$

Binary

$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 \end{pmatrix} \lambda = y$$

Odd/Even Branching

$$\lambda_1 = \lambda_3 = 0$$

$$or$$

$$\lambda_2 = \lambda_4 = 0$$

Formulation Step 2: Combining with Strong Formulation

Long Lost Integral Formulation

$$\{P^i\}_{i=1}^n$$
 polytopes

$$x \in \bigcup_{i=1}^{n} P^i \Leftrightarrow$$

Also for general polyhedra with common recession cones.

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} v \lambda_v^i = x$$

$$\sum_{v \in \text{ext}(P^i)} \lambda_v^i = y_i$$

$$\sum_{i=1}^{n} y_i = 1$$

$$y \in \{0, 1\}^n, \lambda_v^i \ge 0$$

Jeroslow and Lowe 1984.

Combining with Alternative Encoding

$$\{P^i\}_{i=1}^n$$
 polytopes

$$x \in \bigcup_{i=1}^{n} P^i \Leftrightarrow$$

Also for general polyhedra with common recession cones.

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} v \lambda_v^i = x$$

$$\sum_{v \in \text{ext}(P^i)} \lambda_v^i = y_i$$

$$\sum_{i=1}^{n} y_i = 1$$

$$y \in \{0, 1\}^n, \lambda_v^i \ge 0$$

Jeroslow and Lowe 1984.

Combining with Alternative Encoding

$$\{P^i\}_{i=1}^n$$
 polytopes

$$x \in \bigcup_{i=1}^{n} P^i \Leftrightarrow$$

Also for general polyhedra with common recession cones.

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} v \lambda_v^i = x$$

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} \lambda_v^i = 1$$

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} b^i \lambda_v^i = y$$

$$i=1 \text{ } v \in \text{ext}(P^i)$$

$$y \in \{0,1\}, \lambda_v^i \ge 0$$

Jeroslow and Lowe 1984.

Combining with Alternative Encoding

$$\{P^i\}_{i=1}^n$$
 polytopes

$$x \in \bigcup_{i=1}^{n} P^i \Leftrightarrow$$

Also for general polyhedra with common recession cones.

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} v \lambda_v^i = x$$

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} \lambda_v^i = 1$$

$$\sum_{i=1}^{n} \sum_{v \in \text{ext}(P^i)} b^i \lambda_v^i = y$$

$$i = 1 \quad v \in \text{ext}(P^i)$$

$$y \in \{0, 1\}, \lambda_v^i \ge 0$$

V., Ahmed and Nemhauser 2010; V. 2012.

Univariate Transportation Problems

Piecewise Linear

Piecewise Linear

Piecewise Linear + Semi Continuous

Summary, Extensions and More.

- Effective formulations: Encode and Formulate
 - Best encoding? Why not try a few.
 - Clever combination of encodings can be useful (e.g. V. and Nemhauser 2008 for multivariate piecewise linear functions)
- Smaller formulations for shared vertex case
 - Need encodings with special structure.

More Information

More Information

- Survey: V., "MIP Formulation Techniques":
 - http://www.optimization-online.org/DB_HTML/2012/07/3539.html.

More Information

- Survey: V., "MIP Formulation Techniques":
 - http://www.optimization-online.org/DB_HTML/2012/07/3539.html.
- Next year: automatic formulations for JUMP
 - Julia based modeling language:
 - As simple as AMPL + "faster" than C++
 - Solver independent call-backs and more!
 - JUMP/Julia tutorial in January