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Mixed Integer Binary Formulations

® MIP Formulations = Model Finite Alternatives
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Outline

® MIP v/s constraint branching.

® "Have your cake and eat It too” formulation
® Step 1: Encoding alternatives.

Step 2: Combine with strong “standard”
formulation.

® Summary, Extensions and More.


http://www.amazon.com/Have-Your-Cake-Eat-Too/dp/0688111106
http://www.amazon.com/Have-Your-Cake-Eat-Too/dp/0688111106
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Worst case: n/2 branches to solve
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Formulating Discrete Alternatives
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Never more than one branch (2 nodes).




Constraint Branching is the Solution?

® Ryan anad

and Tomlir
plecewise

» SOST:

® Problem: Need *

branching

-oster, 1981,

1970. Also SOS2 (

t

Zizl )\z =1 or
0

W =1 YW > or

® Discrete Alternatives: SOS1 branching of Beale

3. and T, 70) and

inear functions (Tomlin 1981).

t

Zz—:l M, =0

W =W W = v

0 re-iImplement advancead

selection (e.g. pseudocost ).



Binary v/s Specialized Branching

B Weak Integer SOS2 Branching Mystery Integer



Binary v/s Specialized Branching

150 s
® CPLEX 9: Basic SOS2 112.5 s
branching implementation e
(graph from Nemhauser, Keha and V. ‘08 Lo L

i =
e

Large

= )

B Weak Integer B SOS2 Branching Mystery Integer



Binary v/s Specialized Branching

150 s
® CPLEX 9: Basic SOS2 112.5 s
branching implementation ¥ = o
(graph from Nemhauser, Keha and V. ‘08) . — Lo e
Med.\. 0 &
Large
2,000 s
® CPLEX 11: Improved SOS2 1500 s
branching implementation T
‘ 3 1,000 s
(graph from Nemhauser, Anmed and V. ‘10) ; s
-:‘h —500s
16 (0] &

32

B Weak Integer B SOS2 Branching Mystery Integer



Binary v/s Specialized Branching

150 s
® CPLEX 9: Basic SOS2 112.5 s
branching implementation ¥ = o
(graph from Nemhauser, Keha and V. ‘08) . — Lo e
Med.\. 0 &
Large
2,000 s
® CPLEX 11: Improved SOS2 1500 s
branching implementation T
‘ 3 1,000 s
(graph from Nemhauser, Anmed and V. ‘10) ; s
-:‘h —500s
16 S—

32

B Weak Integer B SOS2 Branching Mystery Integer



Formulation Step 1:
Encoding Alternatives



Formulation for Discrete Alternatives

® || and Lu 2009, Adams
and Henry 2011, V. and
Nemhauser 2008.

® Sommer, TIMS 1972.

® | og = Binary Encoding
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Unary Encoding
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Best Bound = 0 unless:

yi:O \4)

Need k£ = log, n
branches
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: Incremental Encoding

Best Bound = 1 if:
Yix = 0V Y+ — 1

Only need
1 branch!
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Induced Constraint Branching
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Formulation Step 2:
Combining with Strong Formulation
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Combining with Alternative Encoding
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Univariate Transportation Problems
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Piecewise Linear + Semi Continuous
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Summary, Extensions and More.

®

—ffective formulations:

—ncode and Formulate

» Best encoding? Why not try a few.

Clever combination of encodings can be useful
(e.g. V. and Nemhauser 2008 for multivariate
plecewise linear functions)

® Smaller formulations for shared vertex case

Need encodings with special structure.



viore -Iﬁikolﬂﬁﬁéti@i)

)
T
-




More Information

® Survey: V., “MIP Formulation Technigues”:

' http://www.optimization-online.org/DB_HTML/2012/07/3539.html.


http://www.optimization-online.org/DB_HTML/2012/07/3539.html
http://www.optimization-online.org/DB_HTML/2012/07/3539.html

More Information

® Survey: V., “MIP Formulation Techniques”:

® http://www.optimization-online.org/DB_HTML/2012/07/3539.html.

® Next year: automatic formulations for JUMP

® Julia based modeling language:

® As simple as AMPL + “faster” than C++

® Solver independent call-backs and more!

JUMP/Julia tutorial in January


http://www.optimization-online.org/DB_HTML/2012/07/3539.html
http://www.optimization-online.org/DB_HTML/2012/07/3539.html



