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CG Closure = Add all CG Cuts

cc(C) == () {z €eR" : (a,z) < |oc(a)]}

ac/lm
® Not necessarily a polyhedron, remember:
C= () {zeR": (a,z) <ocla)}

aclm
® CC(C) isa polyhedronif C' is:

® a rational polyhedron (Schrijver, 1980).

® a strictly convex set (D., D. and V. 2010).
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CG Closure is Finitely Generated

Theorem: There exists finite .S C Z" such that

cc(C) = () {z €R™ : (a,2) < |oc(a)]}
acsS

—
cc(C,S)

Proof by Induction on dim(C'):

® Step 1: Create finite S; s.t. ¢¢(C, S1) C C, etc.

® Step 2: Show only missed finite number of cuts
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Main Tool: Lifting Cuts for Faces

P polyhedron, F' face of P
CC(F') =CC(C)NF (Schrijver, '86)

If CC(F,) is finitely generated then:
5.5, s.t.

o |S,| < 0.

e CC(C,S,) N H= = CC(F,)

e CC(C,S,) CH,




Lifting Cuts for Faces Proof

® Part 1: Kill Irrationality: aff;(C) := aff (aff(C) N Z")

S7| < 00 s.t. CC(C,Sr)NH;
CC(C, 51)

aff; (H,)

(Y

C
€ Ial

® Kronecker's approximation theorem
® Part 2: Lift inside aff; (H )

Sr| < oo s.t. CC(C,Sg) Naff; (H, ) =CC(F,) Naff; (H,)

® Dirichlet’s approximation theorem

8/13



Step 1: Two Approximations

® Approximation A:

® Finite S 4, such that cc(C, S4) C C naff;(C)

® Proof: Compactness argument

® Approximation B:

® Finite S such that
CC(C,S4 USg)Nrelbd(C) = cc(C) Nrelbd(O)
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Approximation B

CC(C, S4) is a polytope

|

CC(C,S4) Nrelbd(C) C

Induction Hypothesis
CC(Fy,) is finitely generated:

Sp = lifting of CC(F, )

S1=54USB
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V= ext (CC(51,C)) \ Z"
(a,v) > |oc(a )J
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Conclusions and Current Work

® CG Closure of Compact Convex set is Polytope:

® Answers 30 year old question by Schrijver for
“Irrational” polytopes (see also Dunkel and
Schulz 2010)

® \Vhat about unbounded sets?

®CGc
Ulalele

osure Is polyhedron for a class of

UNnded sets:

® Class Includes rational polyhedra = True
generalization of Schrijver theorem.
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