Comparison of Methodologies for Limiting Opening Sizes in Forest Harvest Scheduling

Marcos Goycoolea¹ Alan Murray² Juan Pablo Vielma¹ Andres Weintraub³

¹Department of Industrial and Systems Engineering Georgia Institute of Technology

> ²Department of Geography The Ohio State University

³Departamento de Ingenieria Industrial Universidad de Chile

INFORMS Annual Meeting, Wednesday Nov 16, 2005

Outline

Introduction

- Description of Problem
- The Area Restriction Model (ARM)
- Two Integer Programming Approaches for ARM
 - Cell Approach
 - Cluster Approach
- 3 Comparing the two Approaches
 - Modeling Advantages of the Cluster Approach
 - Computational Advantages of Each Approach

Description of Problem The Area Restriction Model (ARM)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Obtain Harvest Schedule that Maximizes Profit Subject to Clear Cut Limitations and Side Constraints

- Environmental regulations set Maximum Area Constraints:
 - Reasons include wildlife habitat, scenic beauty, etc.
 - Maximum Clear Cut Area: 40+ to 120+ acres.
 - Thompson et al. 1973, Jones et al. 1991, Barrett et al. 1998, Murray 1999, Boston and Bettinger 2001, Boston and Bettinger 2001, McDill et al. 2002, Bettinger and Sessions 2003...

- Side constraints include:
 - Timber Volume Flow Constraints.
 - Average Ending Age.

Description of Problem The Area Restriction Model (ARM)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

ARM Includes Aggregation of Cells in the Problem

• Forest composed of small management units (Cells).

- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

Description of Problem The Area Restriction Model (ARM)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

Description of Problem The Area Restriction Model (ARM)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

Description of Problem The Area Restriction Model (ARM)

ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

Cell Approach Cluster Approach

Cell Approach Forbids Infeasible Clusters

One variable per cell.

• Cover/Path Constraints forbid harvesting (Minimal) Infeasible Clusters. (McDill et al. 2002)

• Strengthening:

- Crowe et al. 2003 Clique Constraints.
- Gunn and Richards 2005 Stand Centered Const.

Cell Approach Cluster Approach

Cell Approach Forbids Infeasible Clusters

- One variable per cell.
- Cover/Path Constraints forbid harvesting (Minimal) Infeasible Clusters. (McDill et al. 2002)
- Strengthening:
 - Crowe et al. 2003 *Clique* Constraints.
 - Gunn and Richards 2005 Stand Centered Const.

Cell Approach Cluster Approach

Cell Approach Forbids Infeasible Clusters

- One variable per cell.
- Cover/Path Constraints forbid harvesting (Minimal) Infeasible Clusters. (McDill et al. 2002)
- Strengthening:
 - Crowe et al. 2003 Clique Constraints.
 - Gunn and Richards 2005 Stand Centered Const.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Cell Approach Cluster Approach

Cluster Approach Does Explicit Aggregation

• One variable per feasible cluster.(Martins et al 1999, 2000. McDill et al 2002).

- Constraints forbid harvesting adjacent clusters.
- Strengthening:
 - Goycoolea et al 2001,2005, Martins et al 2000 Clique Constraints.

Cell Approach Cluster Approach

Cluster Approach Does Explicit Aggregation

- One variable per feasible cluster.(Martins et al 1999, 2000. McDill et al 2002).
- Constraints forbid harvesting adjacent clusters.
- Strengthening:
 - Goycoolea et al 2001,2005, Martins et al 2000 Clique Constraints.

Cell Approach Cluster Approach

Cluster Approach Does Explicit Aggregation

- One variable per feasible cluster.(Martins et al 1999, 2000. McDill et al 2002).
- Constraints forbid harvesting adjacent clusters.
- Strengthening:
 - Goycoolea et al 2001,2005, Martins et al 2000 *Clique* Constraints.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Cluster Approach Easily Allows for Extra Modeling Requirements

- Fixed Harvesting Costs:
 - Modify objective coefficients in cluster approach.
 - Not clear how to do in cell approach.

• Average area clear-cut constraints:

- Implemented as linear constraints in cluster approach.
- Not clear how to do in cell approach.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Cluster Approach Easily Allows for Extra Modeling Requirements

- Fixed Harvesting Costs:
 - Modify objective coefficients in cluster approach.
 - Not clear how to do in cell approach.

- Average area clear-cut constraints:
 - Implemented as linear constraints in cluster approach.
 - Not clear how to do in cell approach.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Control Over Clusters Creation Allows to Restrict Clear Cut Shapes and Gives Heuristic

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Control Over Clusters Creation Allows to Restrict Clear Cut Shapes and Gives Heuristic

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Control Over Clusters Creation Allows to Restrict Clear Cut Shapes and Gives Heuristic

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Control Over Clusters Creation Allows to Restrict Clear Cut Shapes and Gives Heuristic

- Easy to forbid inconvenient cluster shapes:
 - U shaped clusters.
 - Long and thin clusters.
 - etc.

- Minimum Cluster Size.
 - Often fixed costs hard to quantify.
 - Imposed for economic reasons.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Description of Forest Instances

- El Dorado
 - 1,363 nodes and 3,609 arcs.
 - Node areas 10-116.35 acres. Max area 120.
 - Feasible clusters \leq 7 nodes, cliques \leq 4 nodes.
- Shulkell
 - 1,039 nodes and 2,065 arcs.
 - Node areas 0.31-277.64 acres.Max area 40.
 - Feasible clusters ≤ 13 nodes, cliques ≤ 4 nodes.
- Lemon Creek (Partial URM)
 - 6,624 nodes and 18,048 arcs.
 - Node areas 7.01 and 242.53 acres.Max area 40.
 - Feasible clusters \leq 5 nodes, cliques \leq 4 nodes.
- 3 and 5 period instances with volume and ending age constraints. Solved with CPLEX 9 for 10,000 seconds. 0.01% GAP considered Optimal

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Cluster Approach LP is Tighter that Cell Approach LP

• Theorem: LP of Cluster Formulation is Stronger than LP of Cell Formulation with Cover Constraints

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Cluster Approach LP is Tighter that Cell Approach LP

• Theorem: LP of Cluster Formulation is Stronger than LP of Cell Formulation with Cover Constraints

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Performance of IP for Single Period Problems

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Performance of IP for Multiperiod Prob. w Side Const.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Why are Tight LP's Good for Solving IP's

- Solving IP's, Two Aspects:
 - Lower Bounds: Integer Feasible Solutions
 - Upper Bounds: Best LP of unprocessed nodes. Used to prove optimality or validate GAP.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Details of IP for Multiperiod Prob. w Side Const.

Lemon Creek 5 Periods

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Conclusions

- Advantages of the Cluster Approach:
 - Models problems which cell approach can not.
 - Tighter LP bounds (both theoretically and practically).
 - One period instance sub-problem solves much better.
- Advantages of the Cell Approach.
 - Better at finding good feasible solutions quickly.
 - Linear Programming Relaxation solves very fast.
- Which approach should be used? Both very effective!
 - For quickly finding solutions within a very small gap?
 - For solving to optimality?
 - For validating a heuristic?
 - The Important Question: What is the target time/gap?

More real forest instances needed. (FMOS)

Slides available at http://www.isye.gatech.edu/~jvielma/.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Conclusions

- Advantages of the Cluster Approach:
 - Models problems which cell approach can not.
 - Tighter LP bounds (both theoretically and practically).
 - One period instance sub-problem solves much better.
- Advantages of the Cell Approach.
 - Better at finding good feasible solutions quickly.
 - Linear Programming Relaxation solves very fast.
- Which approach should be used? Both very effective!
 - For quickly finding solutions within a very small gap?
 - For solving to optimality?
 - For validating a heuristic?
 - The Important Question: What is the target time/gap?
- More real forest instances needed. (FMOS)

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

Conclusions

- Advantages of the Cluster Approach:
 - Models problems which cell approach can not.
 - Tighter LP bounds (both theoretically and practically).
 - One period instance sub-problem solves much better.
- Advantages of the Cell Approach.
 - Better at finding good feasible solutions quickly.
 - Linear Programming Relaxation solves very fast.
- Which approach should be used? Both very effective!
 - For quickly finding solutions within a very small gap?
 - For solving to optimality?
 - For validating a heuristic?
 - The Important Question: What is the target time/gap?
- More real forest instances needed. (FMOS)
- Slides available at http://www.isye.gatech.edu/~jvielma/.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

3

Sizes of Formulations are Comparable

 w/r to maximum clear-cut clusters grow in the same order as cover constraints.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

・ コット (雪) (雪) (雪) (雪)

Sizes of Formulations are Comparable

 w/r to maximum clear-cut clusters grow in the same order as cover constraints.

Modeling Advantages of the Cluster Approach Computational Advantages of Each Approach

・ コット (雪) (雪) (雪) (雪)

Sizes of Formulations are Comparable

 w/r to maximum clear-cut clusters grow in the same order as cover constraints.