wo Implementations of Green–Up

Computational Results

Green–Up and Adjacency Issues in Forest Spatial Harvesting

Marcos Goycoolea⁴ Alan Murray² Juan Pablo Vielma¹ Andres Weintraub³

¹School of Industrial and Systems Engineering Georgia Institute of Technology

> ²Department of Geography The Ohio State University

³Departamento de Ingenieria Industrial Universidad de Chile

> ⁴School of Business Universidad Adolfo Ibáñez

INFORMS Annual Meeting, 2006 – Pittsburgh

Introduction	Green–Up Constraints	Two Implementations of Green–Up	Computational Results
Outline			

Introduction

- Description of Problem
- The Area Restriction Model (ARM)
- Formulations
- Green–Up Constraints
- Two Implementations of Green–Up
 - Dynamic Green–Up
 - Static Green–Up
- Computational Results
 - Solve Times
 - Profit of Dynamic Green–Up v/s Static Green–Up
 - Impact of Area Constraints v/s Side Constraints

• Environmental regulations set Maximum Area Constraints:

- Reasons include wildlife habitat, scenic beauty, etc.
- Maximum Clear Cut Area: 40+ to 120+ acres.
- Thompson et al. 1973, Jones et al. 1991, Barrett et al. 1998, Murray 1999, Boston and Bettinger 2001, Boston and Bettinger 2001, McDill et al. 2002, Bettinger and Sessions 2003...

- Side constraints include:
 - Timber Volume Flow Constraints.
 - Average Ending Age.

 Introduction
 Green–Up Constraints
 Two Implementations of Green–Up

 ○●○
 ○○○
 ○○○○○

ARM Includes Aggregation of Cells in the Problem

Forest composed of small management units (Cells).

- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

 Introduction
 Green–Up Constraints
 Two Implementations of Green–Up

 ○●○
 ○○○
 ○○○○

Computational Results

ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

 Introduction
 Green–Up Constraints
 Two Implementations of Green–Up

 ○●○
 ○○○
 ○○○○

Computational Results

ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

Introduction Green–Up Constraints Two Implementations of Green–U ○●○ ○○○

Computational Results

ARM Includes Aggregation of Cells in the Problem

- Forest composed of small management units (Cells).
- Cluster = Groups of adjacent cells.
- Feasible Cluster = Area-complying clusters.
- Solution is group of non-adjacent feasible clusters.

Three IP Formulations for the ARM

Cell Approach:

- One variable per cell.
- McDill et al. 2002, Crowe et al. 2003, Gunn and Richards 2005, Tóth et al. 2005 ...
- Cluster Approach:
 - One variable per feasible cluster.
 - Martins et al 1999,2000, McDill et al 2002, Goycoolea et al 2001,2005 ...
- Stand–Clearcut Approach:
 - One variable for each pair (cell,cluster).
 - Constantino et al 2005.

luction Green–Up Constraints Two Implementations of Green–Up

"Green–up time": # of periods needed for harvested cell to stop being clearcut

- Assumption:
 - Harvested cells are "immediatelly" replanted.
 - Cells harvested at most once during planning horizon.
- American Forest and Paper Association (2001):
 - "green-up requirements, under which past clear-cut harvest areas must have trees at least 3 years old or 5 feet high ... before adjacent areas may be clear-cut."
- Green–up depends on many factors (Snyder and ReVelle 1997).

Green–Up Constraints ●○○ Two Implementations of Green–Up ○○○○

"Green–up time": # of periods needed for harvested cell to stop being clearcut

- Assumption:
 - Harvested cells are "immediatelly" replanted.
 - Cells harvested at most once during planning horizon.
- American Forest and Paper Association (2001):
 - "green-up requirements, under which past clear-cut harvest areas must have trees at least 3 years old or 5 feet high ... before adjacent areas may be clear-cut."
- Green–up depends on many factors (Snyder and ReVelle 1997).

"Green–up time": # of periods needed for harvested cell to stop being clearcut

- Assumption:
 - Harvested cells are "immediatelly" replanted.
 - Cells harvested at most once during planning horizon.
- American Forest and Paper Association (2001):
 - "green-up requirements, under which past clear-cut harvest areas must have trees at least 3 years old or 5 feet high ... before adjacent areas may be clear-cut."
- Green–up depends on many factors (Snyder and ReVelle 1997).

(Cell 5 is harvested)

Green-up=1

(Cell 5 is harvested)

(Cell 5: not clearcut, bellow minimum harvest age) (Cell 5: not clearcut, bellow minimum harvest age)

Green-up=2

▲日▶▲御▶▲臣▶▲臣▶ ▲臣 めんの

harvest age)

Green-up=3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

t=1

t=2

t=3

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○

▲□▶ ▲圖▶ ▲温▶ ▲温♪ æ

Two Ways of Implementing Green–Up Constraints

• *Dynamic* Green–Up:

- Barrett and Giles (2000), Gunn and Richards (2005), ...
- Auxiliary variables indicate *clearcut* state of cells.
- Static Green–Up:
 - Goycoolea, et. al. (2005), Constantino, et. al. (2005)
 - No auxiliary variables.

Are they equivalent?

• Simplifying assumption: Only possible treatment is clearcut.

Two Ways of Implementing Green–Up Constraints

- *Dynamic* Green–Up:
 - Barrett and Giles (2000), Gunn and Richards (2005), ...
 - Auxiliary variables indicate *clearcut* state of cells.
- Static Green–Up:
 - Goycoolea, et. al. (2005), Constantino, et. al. (2005)
 - No auxiliary variables.
- Are they equivalent? They are NOT!
- Simplifying assumption: Only possible treatment is clearcut.

Two Ways of Implementing Green–Up Constraints

- *Dynamic* Green–Up:
 - Barrett and Giles (2000), Gunn and Richards (2005), ...
 - Auxiliary variables indicate *clearcut* state of cells.
- Static Green–Up:
 - Goycoolea, et. al. (2005), Constantino, et. al. (2005)
 - No auxiliary variables.
- Are they equivalent? They are NOT!
- Simplifying assumption: Only possible treatment is clearcut.

Dynamic Green-up Constraints

- Idea (Green–Up= Δ):
 - Cell harvested in period *t* is considered in *clearcut* state for periods {*t*,...,*t* + Δ}.
 - Green–Up constraints limits combined area of contiguous cells in *clearcut* state.
- Implementable in all formulations.

Static Green–up Constraints

- Mimics effects of green up constraints on URM.
- Forces all contiguous cells in *clearcut* state to be harvested in same time period.
- Direct implementation in Cluster and Stand–Clearcut formulations. Cell formulation needs big-M.

ntroduction	Green–Up Constraints	Two Implementations of Gr	een–Up Computational Results
		Green-up=2	
	t=1	t=2	t=3

• Valid for Dynamic Green–Up

Invalid for Static Green–Up

t=4

ntroduction	Green–Up Constraints	Two Implementations of Gro	een–Up Computational Results
		Green-up=2	
	t=1	t=2	t=3

Valid for Dynamic Green–Up

Invalid for Static Green–Up

t=4

Technical Details

- Green–Up= Δ .
- Dynamic Green–Up for cell approach:
 - Binary variable $x_{u,t}$ indicates if cell u is harvested in period t.
 - Binary variable $z_{u,t}$ indicates if cell u is in clearcut state in period t.
 - Constraint $z_{u,t} = \sum_{l=t-\Delta+1}^{t} x_{u,l}$.
 - Adjacency constraints (Path/Cover, Cliques,...) work on clearcut variables z_{u,t}.
- Static Green–Up for cluster approach:
 - Binary variable *x*_{*C*,*t*} indicates if cluster *C* is harvested in period *t*.
 - $\Lambda(K)$ set of clusters that intersect clique *K*.
 - Clique constraint becomes: $\sum_{C \in \Lambda(K)} \sum_{l=t}^{t+\Delta-1} x_{C,l} \le 1$

Description of Forest Instance

- El Dorado
 - 1,363 nodes and 3,609 arcs. Max area 120.
 - Feasible clusters \leq 7 nodes, cliques \leq 4 nodes.
- 3, 5 and 12 period instances with volume and ending age constraints.
- For 3 periods Green–Up of 1 and 2 periods.
- For 5 and 12 periods Green–Up of 1, 2 and 3.
- Used Dynamic Green–Up for all three formulations.
- Used Static Green–Up only for Cluster and Stand–Clearcut (Big-M for Cell).
- Solved with CPLEX 9 for 10,000 seconds. 0.01% GAP considered Optimal.

Problems with Green–Up>1 are usually harder.

- Only 2 instances solved to optimality.
- No feasible solutions for Static Green–Up with 12 periods.
- Problems much harder for 12 periods.
- Stand–Clearcut has some trouble with LP's:
 - More development needed. More preprocessing? (Mills and McDill 2006).
 - Stand–Clearcut is the best method for 12 periods, Green–Up=1!

Introduction Green–Up Constraints Two Implementations of Green–Up

Computational Results

Final GAPs for El Dorado 3 periods

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

duction Green–Up Constraints Two Implementations of G

Computational Results

Final GAPs for El Dorado 5 periods

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → ⊙ < ⊙

Introduction Green–Up Constraints Two Implementations of Green–Up Computational Results

Final GAPs for El Dorado 12 periods

Introduction Green–Up Constraints

Two Implementations of Green–Up

Computational Results

Profit Loss for Static Green–Up is Moderate

 Profit loss from using Static Green–Up instead of Dynamic Green–Up is about 3%.

Objective of Dynamic Green–Up v/s Static Green–Up

- Side constraints can be mode important than area constraints (SSAFR 2006):
 - Effect usually stronger for many periods.
- Green–Up>1 can makes area constraints crucial again.

Computational Results Improvement in Objective When Removing Area Constraints (El Dorado, Dynamic Green–Up)

э

Introduction	Green–Up Constraints	Two Implementations of Green–Up	Computational Results
Conclusio	ons		

- Two ways of implementing Green–Up:
 - No clear computational advantage.
 - Moderate difference in objective value.
 - Which one do you like better?
- Green–Up>1 can be harder:
 - Area constraints become important again.
 - Strengthening area constraints might become more important (Gunn and Richards 2005, Tóth et al. 2005,...).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆