Advanced Mixed Integer Programming Formulations

Juan Pablo Vielma
Massachusetts Institute of Technology

Ingeniería UC,
Agosto, 2017.

(Linear) Mixed Integer Programming Formulation

- Let
$-S \subseteq \mathbb{R}^{n}$,
$-n_{1}+n_{2}=n, p_{1}+p_{2}=p, A \in \mathbb{Q}^{m \times n}, D \in \mathbb{Q}^{m \times p}, b \in \mathbb{Q}^{m}$
$-P:=\left\{(x, w) \in \mathbb{R}^{n} \times \mathbb{R}^{p}: A x+D w \leq b\right\}$
- $P_{I}:=P \cap\left(\mathbb{R}^{n_{1}} \times \mathbb{Z}^{n_{2}} \times \mathbb{R}^{p_{1}} \times \mathbb{Z}^{p_{2}}\right)$
- P_{I} is a MIP formulation of S iff

$$
S=\operatorname{Proj}_{x}\left(P_{I}\right)
$$

- A formulation is integral or ideal iff

$$
\operatorname{ext}(P) \subseteq\left(\mathbb{R}^{n_{1}} \times \mathbb{Z}^{n_{2}} \times \mathbb{R}^{p_{1}} \times \mathbb{Z}^{p_{2}}\right)
$$

Advantage of Integral Formulations

- If P_{I} is a formulation of S then:

$$
\max _{x}(c \cdot x: x \in S)=\max _{x, w}\left(c \cdot x:(x, w) \in P_{I}\right)
$$

- If P_{I} is an ideal formulation of S then:

$$
\max _{x, w}\left(c \cdot x:(x, w) \in P_{I}\right)=\max _{x, w}(c \cdot x:(x, w) \in P)
$$

- In practice, S is one of many constraints:
- Ideal (or strong) formulations tend to be more effective

Example: Piecewise Linear Network Flow

- Network flow or transportation problem
- Economies of scale for transportation costs

Constructing a MIP Formulation

$\min \sum_{i=1}^{n} f_{i}\left(x_{i}\right)$
s.t.

$$
\begin{aligned}
E x & \leq h \\
0 \leq x_{i} & \leq u \quad \forall i \in[n]
\end{aligned}
$$

$$
\min \sum_{i=1}^{n} z_{i}
$$

s.t.

$$
\begin{aligned}
E x & \leq h & \\
0 \leq x_{i} & \leq u & \forall i \in[n] \\
\left(x_{i}, z_{i}\right) & \in g r\left(f_{i}\right) & \forall i \in[n] .
\end{aligned}
$$

min

$$
\sum_{i=1}^{n} z_{i}
$$

s.t.

$$
\begin{array}{rlrl}
E x & \leq h & \\
0 \leq x_{i} & \leq u & \forall i \in[n] \\
A^{i}\binom{x_{i}}{z_{i}}+B^{i} \lambda^{i}+D^{i} y^{i} \leq b^{i} & \forall i \in[n] \\
y^{i} & \in \mathbb{Z}^{k} & \forall i \in[n]
\end{array}
$$

$$
\operatorname{gr}\left(f_{i}\right):=\left\{\left(x_{i}, z_{i}\right): f_{i}\left(x_{i}\right)=z_{i}\right\}
$$

Strong, but not Necessarily Ideal

min

$$
\sum_{i=1}^{n} z_{i}
$$

s.t.

$$
\left.\begin{array}{rl}
E x \leq h & \\
0 \leq x_{i} \leq u & \forall i \in[n] \\
A^{i}\binom{x_{i}}{z_{i}}+B^{i} \lambda^{i}+D^{i} y^{i} \leq b^{i} & \begin{array}{l}
\\
y^{i}
\end{array} \in \mathbb{Z}^{k}
\end{array} \begin{array}{l}
\forall i \in[n]
\end{array}\right\} \text { Ideal for each i }
$$

Not necessarily ideal for complete problem

Naïve Formulation for Piecewise Linear Functions

$$
\sum_{i=1}^{k} y_{i}=1
$$

$$
y \in\{0,1\}^{k}
$$

$$
f(x)= \begin{cases}m_{1} x+c_{1} & x \in\left[d_{1}, d_{2}\right] \\ & \vdots \\ m_{k} x+c_{k} & x \in\left[d_{k}, d_{k+1}\right]\end{cases}
$$

Not integral and very weak

Better Formulation (CC)

$$
\sum_{i=1}^{4} d_{i} \lambda_{i}=x
$$

$$
\sum_{i=1}^{4} \lambda_{i}=1
$$

$$
\lambda_{i} \geq 0
$$

$$
\sum_{i=1}^{3} y_{i}=1
$$

$$
y_{i} \in\{0,1\}
$$

$$
\lambda_{1} \leq y_{1}
$$

$$
\lambda_{2} \leq y_{1}+y_{2}
$$

$$
f(x)= \begin{cases}m_{1} x+c_{1} & x \in\left[d_{1}, d_{2}\right] \\ & \vdots \\ m_{k} x+c_{k} & x \in\left[d_{k}, d_{k+1}\right]\end{cases}
$$

$$
\lambda_{3} \leq y_{2}+y_{3}, \quad \lambda_{4} \leq y_{3}
$$

Still not integral, but strong in a restricted sense

Sharp Formulations

- A MIP formulation P_{I} of S is sharp or convex hull iff

$$
\operatorname{conv}(S)=\operatorname{Proj}_{x}(P)
$$

- If P_{I} is a sharp formulation of S then:

$$
\max _{x, w}\left(c \cdot x:(x, w) \in P_{I}\right)=\max _{x, w}(c \cdot x:(x, w) \in P)
$$

- CC is a sharp formulation for piecewise linear functions, but Big- M is not sharp. $\quad\left(\begin{array}{cc}1-x & x \in[0,1]\end{array}\right.$
- Exercise: Show for $x=2$ and $\quad f(x)= \begin{cases}2 x-2 & x \in[1,2] \\ 6-2 x & x \in[2,3] \\ x-3 & x \in[3,4]\end{cases}$

Ideal and Sharp Formulations

- Ideal formulations are sharp
- If $\mathrm{p}=0$ (no auxiliary variables) then sharp formulations are ideal
- Example of non-ideal sharp formulation:

Remember: CC is not Ideal

Extreme point: $\lambda_{2}=\lambda_{3}=1 / 2, \lambda_{0}=\lambda_{1}=0$

$$
x=2.5, z=1 \quad y_{1}=y_{3}=1 / 2, \quad y_{2}=0
$$

Simple Formulation for Univariate Functions

$$
z=f(x)
$$

$$
\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j}
$$

$$
y \in\{0,1\}^{4}, \quad \sum_{i=1}^{4} y_{i}=1
$$

$$
0 \leq \lambda_{1} \leq y_{1}
$$

$$
0 \leq \lambda_{3} \leq y_{2}+y_{3}
$$

Size $=O$ (\# of segments)

$$
1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0
$$

$$
0 \leq \lambda_{2} \leq y_{1}+y_{2}
$$

$$
0 \leq \lambda_{4} \leq y_{3}+y_{4}
$$

Non-Ideal: Fractional Extreme Points $0 \leq \lambda_{5} \leq y_{4}$

Advanced Formulation for Univariate Functions

$$
z=f(x)
$$

$$
\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j}
$$

$$
1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0
$$

$$
y \in\{0,1\}^{2}
$$

$$
0 \leq \lambda_{1}+\lambda_{5} \leq 1-y_{1}
$$

$$
0 \leq \lambda_{3} \quad \leq y_{1}
$$

$$
0 \leq \lambda_{4}+\lambda_{5} \leq 1-y_{2}
$$

Size $=O$ ($\log _{2} \#$ of segments)
Ideal: Integral Extreme Points

$$
0 \leq \lambda_{1}+\lambda_{2} \leq y_{2}
$$

Computational Performance

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free
 solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!

Formulation Improvements can be Significant

Constructing Advanced Formulations

Abstracting Univariate Functions

$$
\lambda \in \bigcup_{i=1}^{4} P_{i} \subseteq \Delta^{5}
$$

Abstraction Works for Multivariate Functions

$$
P_{i}:=\left\{\lambda \in \Delta^{m}: \lambda_{j}=0 \quad \forall v_{j} \notin T_{i}\right\}
$$

Complete Abstraction

- $\Delta^{V}:=\left\{\lambda \in \mathbb{R}_{+}^{V}: \sum_{v \in V} \lambda_{v}=1\right\}$,
- $P_{i}=\left\{\lambda \in \Delta^{V}: \lambda_{v}=0 \quad \forall v \notin T_{i}\right\}$
- $\lambda \in \bigcup_{i=1}^{n} P_{i}$
- $T_{i}=$ cliques of a graph

Complete Abstraction

- $\Delta^{V}:=\left\{\lambda \in \mathbb{R}_{+}^{V}: \sum_{v \in V} \lambda_{v}=1\right\}$,
- $P_{i}=\left\{\lambda \in \Delta^{V}: \lambda_{v}=0 \quad \forall v \notin T_{i}\right\}$
- $\lambda \in \bigcup_{i=1}^{n} P_{i}$
- $T_{i}=$ cliques of a graph

From Cliques to (Complement) Conflict Graph

From Conflict Graph to Bi-clique Cover

From Bi-clique Cover to Formulation

$$
\begin{aligned}
& 0 \leq \lambda_{1}+\lambda_{5} \leq 1-y_{1} \\
& 0 \leq \lambda_{3} \quad \leq y_{1} \\
& 0 \leq \lambda_{4}+\lambda_{5} \leq 1-y_{2} \\
& 0 \leq \lambda_{1}+\lambda_{2} \leq y_{2}
\end{aligned}
$$

Ideal Formulation from Bi-clique Cover

- Conflict Graph $G=(V, E)$
$E=\left\{(u, v): u, v \in V, u \neq v, \quad \nexists i\right.$ s.t. $\left.u, v \in T_{i}\right\}$
- Bi-clique cover $\left\{\left(A^{j}, B^{j}\right)\right\}_{j=1}^{t}, \quad A^{j}, B^{j} \subseteq V$

$$
\forall\{u, v\} \in E \quad \exists j \text { s.t. } u \in A^{j} \wedge v \in B^{j}
$$

- Formulation

$$
\begin{aligned}
\sum_{v \in A^{j}} \lambda_{v} & \leq 1-y_{j} & \forall j \in[t] \\
\sum_{v \in B_{j}^{j}} \lambda_{v} & \leq y_{j} & \forall j \in[t] \\
y & \in\{0,1\}^{t} &
\end{aligned}
$$

Recursive Construction of Cover for SOS2, Step 1

Base case $n=2^{1}$:

Step 1 recursion :

Recursive Construction of Cover for SOS2, Step 2

Only edges missing are those between first and last half of conflict graph

Step 2 : Add one more bi-clique

Cover has $\log _{2} n$ bi-cliques.

For non-power of two just delete extra nodes.

Grid Triangulations: Step 1 = SOS2 for Inter-Box

Covers all arcs between boxes

Advanced MIP Formulations

Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Covers all arcs
within boxes

Sometimes 1 additional cover

Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Sometimes 2 additional covers

Sometimes more, but always less than 9

Simple rules to get (near) optimal in Fall '16

More elaborate: SOS3(26)

