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(Linear)	Mixed	Integer	Programming	Formulation

15.083J:	Lecture	2 1 /	19

• Let
–
–
–
–

• PI is a MIP formulation of S iff

• A formulation is integral or ideal iff

n1 + n2 = n, p1 + p2 = p, A 2 Qm⇥n, D 2 Qm⇥p, b 2 Qm

S ✓ Rn,

PI := P \ (Rn1 ⇥ Zn2 ⇥ Rp1 ⇥ Zp2)

ext(P ) ✓ (Rn1 ⇥ Zn2 ⇥ Rp1 ⇥ Zp2
)

P := {(x,w) 2 Rn ⇥ Rp : Ax+Dw  b}

S = Proj

x

(P
I

)



Advantage	of	Integral	Formulations
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• If PI is a formulation of S then:

• If PI is an ideal formulation of S then:

• In practice, S is one of many constraints:
– Ideal (or strong) formulations tend to be more effective

max

x

(c · x : x 2 S) = max

x,w

(c · x : (x,w) 2 P

I

)

max

x,w

(c · x : (x,w) 2 P

I

) = max

x,w

(c · x : (x,w) 2 P )



Example:	Piecewise	Linear	Network	Flow
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• Network	flow	or	transportation	problem
• Economies	of	scale	for	transportation	costs
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Figure 4: Examples of triangulations of subsets of 2.
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Constructing	a	MIP	Formulation
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MIP	Formulation



Strong,	but	not	Necessarily	Ideal
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Ideal for each i

Not necessarily ideal for complete problem



Naïve	Formulation	for	Piecewise	Linear	Functions
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(a) Continuous function.
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(b) Continuous function.
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(c) Lower semicontinuous function.

Figure 2: Examples of triangulations of subsets of 2.

= [ [
(a) Continuous function.

= [ [

(b) Lower semicontinuous function.

Figure 3: Examples of triangulations of subsets of 2.
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Not integral and very weak

di � (di � d1) (1� yi)  x 8i 2 [k]

di + (di � dk) (1� yi) � x 8i 2 [k]

mix+ ci �M i (1� yi)  z 8i 2 [k]

mix+ ci +M i (1� yi) � z 8i 2 [k]

kX

i=1

yi = 1

y 2 {0, 1}k

f(x) =

8
>><

>>:

m1x+ c1 x 2 [d1, d2]
...

mkx+ ck x 2 [dk, dk+1]

M i :=
k+1
max

j=1
{midj + ci � f (dj)}

M i :=
k+1
max

j=1
{f (dj)�midj � ci}



d

1

d

2

d

3

d

4

f(d
4

)

0

f(d
1

)

f(d
2

)

f(d
3

)

(a) Continuous function.

d

0

d

1

d

2

d

3

f(d
3

)

0

f(d
0

)

f(d
1

)

f(d
2

)

(b) Continuous function.

d

0

d

1

= d

2

= d

3

d

4

f(d
4

)

f(d
0

)

f

�(d
2

)

f

+(d
2

)

f(d
2

)

(c) Lower semicontinuous function.

Figure 2: Examples of triangulations of subsets of 2.

= [ [
(a) Continuous function.

= [ [

(b) Lower semicontinuous function.

Figure 3: Examples of triangulations of subsets of 2.
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Better	Formulation	(CC)
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Still not integral, but strong in a restricted sense

S

f(x) =

8
>><

>>:

m1x+ c1 x 2 [d1, d2]
...

mkx+ ck x 2 [dk, dk+1]

conv (S)



Sharp	Formulations
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• A MIP formulation PI of S is sharp or convex hull iff

• If PI is a sharp formulation of S then:

• CC is a sharp formulation for piecewise linear 
functions, but Big-M is not sharp. 
– Exercise: Show for x=2 and

f(x) =

8
>>><

>>>:

1� x x 2 [0, 1]

2x� 2 x 2 [1, 2]

6� 2x x 2 [2, 3]

x� 3 x 2 [3, 4]

max

x,w

(c · x : (x,w) 2 P

I

) = max

x,w

(c · x : (x,w) 2 P )

conv (S) = Proj

x

(P )



Ideal	and	Sharp	Formulations
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• Ideal formulations are sharp 
• If p=0 (no auxiliary variables) then sharp 

formulations are ideal
• Example of non-ideal sharp formulation:



Remember:	CC	is	not	Ideal	
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Vielma, Ahmed and Nemhauser: Mixed-Integer Models for Piecewise Linear Optimization
Article submitted to ; manuscript no. 3

2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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(b) epi(f).

Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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(b) epi(f).

Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Simple	Formulation	for	Univariate	Functions

z = f(x)
✓
x

z

◆
=

X5

j=1

✓
dj

f(dj)

◆
�j

1 =
X5

j=1
�j

Size = O (# of segments)

, �j � 0

Non-Ideal:	Fractional	Extreme	Points
Advanced	MIP	Formulations 11 /	37
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Advanced	Formulation	for	Univariate	Functions

z = f(x)
✓
x

z

◆
=

X5

j=1

✓
dj

f(dj)

◆
�j

1 =
X5

j=1
�j

y 2 {0, 1}2

Size = O (log2 # of segments)

, �j � 0

Ideal:	Integral	Extreme	Points
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Computational	Performance	

• Advanced	formulations	
provide	an	computational	
advantage

• Advantage	is	significantly	
more	important	for	free	
solvers

• State	of	the	art	commercial	
solvers	can	be	significantly	
better	that	free	solvers

• Still,	free	is	free!
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Formulation	Improvements	can	be	Significant

GUROBI
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Constructing	Advanced	Formulations
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Abstracting	Univariate	Functions

z = f(x)
✓
x

z

◆
=

X5

j=1

✓
dj

f(dj)

◆
�j

1 =
X5

j=1
�j , �j � 0�5 =

T4

1 2 3 4 5

� 2
[4

i=1
Pi ✓ �5

Pi :=
�
� 2 �5 : �j = 0 8j /2 Ti

 

Ti := {i, i+ 1} i 2 {1, . . . , 4}
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Abstraction	Works	for	Multivariate	Functions

f(x,y)

y

x

Pi := {� 2 �m : �j = 0 8vj /2 Ti}

� 2
[n

i=1
Pi ✓ �m

vm

Advanced	MIP	Formulations 17 /	37



•

•

•

• Ti = cliques of a graph

Complete	Abstraction
�V :=

n

� 2 RV
+ :

X

v2V
�v = 1

o

,

Pi =
�
� 2 �V : �v = 0 8v /2 Ti
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•

•

•

• Ti = cliques of a graph

Complete	Abstraction
�V :=

n

� 2 RV
+ :

X

v2V
�v = 1

o

,

Pi =
�
� 2 �V : �v = 0 8v /2 Ti

 

Advanced	MIP	Formulations 19 /	37



From	Cliques	to	(Complement)	Conflict	Graph

SOS2

1 2 3 4 5

Advanced	MIP	Formulations 20 /	37



From	Conflict	Graph	to	Bi-clique	Cover

SOS2

1 2 3 4 5

31 2 4 5

2 41 53

+
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From	Bi-clique	Cover	to	Formulation

SOS2

1 2 3 4 5

31 2 4 5

2 41 53

+

0  �1 + �5  1� y1

0  �3  y1

0  �4 + �5  1� y2

0  �1 + �2  y2

Advanced	MIP	Formulations 22 /	37



Ideal	Formulation	from	Bi-clique	Cover

• Conflict	Graph

• Bi-clique	cover

• Formulation X
v2Aj

�v  1� yj 8j 2 [t]
X

v2Bj
�v  yj 8j 2 [t]

y 2 {0, 1}t

��
Aj , Bj

� t

j=1
, Aj , Bj ✓ V

G = (V,E)

E = {(u, v) : u, v 2 V, u 6= v, @i s.t. u, v 2 Ti}

8{u, v} 2 E 9j s.t. u 2 Aj ^ v 2 Bj

Advanced	MIP	Formulations 23 /	37



Recursive	Construction	of	Cover	for	SOS2,	Step	1

21 3

21 3

Base	case	n=21 :

2 13

Step	1	recursion	:

Reflect	Graph	/	Cover

4 521 3 Stick	Graph	/	Cover

Repeat	for	all	bi-cliques	from	2k-1
to	cover	all	edges	within	first	and	

last	half	of	conflict	graph
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Recursive	Construction	of	Cover	for	SOS2,	Step	2

Only	edges	missing	are	those	between	
first	and	last	half	of	conflict	graph

n/2	
+	1

n/2	+	
21 2 n/2 nn-1

Step	2	:	Add	one	more	bi-clique

Cover has log2 n bi-cliques.

For	non-power	of	two	just	delete	extra	nodes.

Advanced	MIP	Formulations 25 /	37



Grid	Triangulations:	Step	1	=	SOS2	for	Inter-Box

2 41 53

31 2 4 5

2

4

1

5

33

1

2

4

5

Covers	all	arcs	
between	boxes
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Grid	Triangulations:	Step	2	=	Ad-hoc	Intra-Box

Covers	all	arcs	
within	boxes

Sometimes	1	
additional	cover
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Grid	Triangulations:	Step	2	=	Ad-hoc	Intra-Box

Sometimes	2
additional	covers

Sometimes	more,	but	
always	less	than	9

Simple	rules	to	get	
(near)	optimal	in	Fall	‘16

Advanced	MIP	Formulations 28 /	37



More	elaborate:	SOS3(26)

Huchette and Vielma: Formulations for unions of V-polyhedra
20 Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the manuscript number!)

edge, since from construction it induces an aggregated SOS2 constraint on the sets tS`uN{k
`“1

. If
k § s ´ r † 2k (i.e. “close together”), note that

î
3k

j“1

A2,j “ J , and so the j1 such that r P A2,j

1
.

Then from construction, s P B2,j

1
, and so this level will separate the infeasible edge pr, sq P Ē.

Finally, if s´ r † k, then this is a feasible edge (pr, sq P E), and we must show that neither first
nor second stage separates the nodes. To see this, note that r P S` and s P S`

1
for some `1 ´ ` § 1,

and so the first stage will not separate them. As for the second, see that for each j P J3kK, we
have that minpa,bqPA2,jˆB

2,j |a ´ b| • k, and so we cannot have pr, sq P A2,j ˆ B2,j ” Ē2,j or ps, rq P
A2,j ˆB2,j ” Ē2,j. ˝

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

1 6 7 8 9 105432 15 16 17 18 1914131211 22 23 24 25 262120

Figure 5. Visualizations of the biclique cover from the proof of Theorem 6 for SOS3p26q. Each row corresponds to
some level j, and the sets A

j and B

j are the blue and green nodes, respectively. The first three rows correspond
the the “first stage” of the biclique cover tpA1,j

,B

1,jqu3
j“1, and the second nine correspond to the “second stage”

tpA2,j
,B

2,jqu9
j“1.

We note that, when k “ OplogpNqq, this biclique cover yields a MIP formulation that is asymp-
totically tight (with respect to the number of auxiliary binary variables) with our lower bound of
rlog

2

pN ´ k ` 1qs from Proposition 1. We can also show an absolute lower bound of depth k for
any biclique cover for SOSk. This implies that when k “ !plogpNqq, although the formulation from
Theorem 6 is not tight with respect to the lower bound from Proposition 1, it is asymptotically
the smallest possible formulation in the pairwise IB framework.

Proposition 7. Any biclique cover for the conflict graph of SOSk must have depth at least
min ttN{2u, ku.

SOS2	on	
Blocks	of	3

Cover	arcs
between	
adjacent	
blocks	of	3
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