Modeling and Solving Discrete Optimization Problems in Practice

Juan Pablo Vielma

Massachusetts Institute of Technology
18.095 - Mathematics Lecture Series.

Cambridge, MA, IAP 2018.

Combinatorial Example: Assignment Problem

- Assign n workers to m tasks to complete all tasks
- At most one task per worker
- Worker i takes $t_{i, j}$ hours to complete task j
- Minimize total time worked
- Graph:
- Worker and task nodes
- Arcs between worker and task nodes

$$
\begin{gathered}
\text { Workers } \\
n=3 \\
t_{1, j}=4
\end{gathered}
$$

Combinatorial Example: Assignment Problem

- Assign n workers to m tasks to complete all tasks
- At most one task per worker
- Worker i takes $t_{i, j}$ hours to complete task j
- Minimize total time worked
- Variables: $x_{i, j}=1$ if worker i is assigned to task j and 0 o.w.
$\min \sum_{i=1}^{n} \sum_{j=1}^{m} t_{i, j} x_{i, j}$
s.t.

$$
\begin{aligned}
\sum_{j=1}^{m} x_{i, j} \leq 1 & & \forall i \in\{1, \ldots, n\} \quad \text { Worker constraints } \\
\sum_{i=1}^{n} x_{i, j} & \geq 1 & \forall j \in\{1, \ldots, m\} \text { Task constraints } \\
x_{i, j} & \in\{0,1\} & \forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}
\end{aligned}
$$

Traveling Salesman Problem : Visit all Cities Once

Formulation for Traveling Salesman Problem

$[n]:=\{1, \ldots, n\}$
$\min \sum_{i, j=1}^{n} d(i, j) x_{i, j}$
s.t.

$$
\begin{aligned}
\sum_{j=1}^{n} x_{i, j} & =1 & & \forall i \in[n] \\
\sum_{i=1}^{n} x_{i, j} & =1 & & \forall j \in[n] \\
x_{i, i} & =0 & & \forall i \in[n] \\
x_{i, j} & \in\{0,1\} & & \forall i, j \in[n]
\end{aligned}
$$

Homework Question 1: Add missing constraints Hint: You will need around 2^{n} inequalities

Mixed Integer Programming (MIP)

- Discrete and continuous variables or combinatorial constraints on continuous variables.
- Example: Find minimum volume ellipsoid that contains 90% of data points

MIP \& Daily Fantasy Sports

The Greater Boston $\underset{ }{\text { FOOOD }}$ BANK
 > \$15K

Download Code from Github:
https://github.com/dscotthunter/Fantasy-Hockey-IP-Code
http://arxiv.org/pdf/1604.01455v1.pdf

How hard is MIP: Traveling Salesman Problem?

MIP = Avoid (Complete) Enumeration

- Number of tours for 49 cities $=48!/ 2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
$>10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
- < 1 sec ! Dantzig, Fulkerson and Johnson 1 in 54'
- Even theoretically hard MIPs "can" be solved:
- Open-source solvers: GLPK, CBC, etc.
- Commercial: Gurobi, CPLEX, etc.
- Modeling Language:

Easy MIP through julià \& OOMP

- julìa : general purpose programming language - download https://julialang.org/downloads/ then click or run from command line
- JuMP : modeling language for optimization

GLPK : Open-source MIP solver

- julia> Pkg.add("JuMP"); Pkg.add("GLPKMathProgInterface")
- Can also try JuliaBox on web
- https://www.juliabox.com/

Easy MIP through julià \& o JuMP

- Assignment problem:
$\min \sum_{i=1}^{n} \sum_{j=1}^{m} t_{i, j} x_{i, j}$
s.t.

$$
\begin{array}{rlrl}
\sum_{j=1}^{m} x_{i, j} \leq 1 & & \forall i \in\{1, \ldots, n\} \\
\sum_{i=1}^{n} x_{i, j} & \geq 1 & & \forall j \in\{1, \ldots, m\} \\
x_{i, j} & \in\{0,1\} & & \forall i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}
\end{array}
$$

```
model = Model(solver=GLPKSolverMIP());
@variable(model, x[1:n,1:m], Bin);
@objective(model, Min, sum(t[i,j]*x[i,j] for i in 1:n, j in 1:m));
@constraint(model, [i=1:n], sum(x[i,j] for j in 1:m) <= 1);
@constraint(model, [j=1:m], sum(x[i,j] for i in 1:n) >= 1);
```

Homework Question 2: Solve problem with random cost Complete file in website.

Solving MIPs: Step 1 = Linear Programming

```
max }\mp@subsup{x}{2}{
s.t. }\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}\leq
    -x}-\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{}\leq
    +x
    -x
        x},\mp@subsup{x}{2}{}\in\mathbb{Z
```

\leftarrow Linear Programming (LP) Relaxation

- Solving LPs is easy in theory and practice.
- One reason = LP duality
- Suppose I guess optimum

$$
x_{1}=0 \text { and } x_{2}=1
$$

- How do I prove that for all solutions of LP $x_{2} \leq 1$?
$\begin{array}{r}(1 / 2) \times\left(x_{1}+x_{2} \leq 1\right) \\ +\quad(1 / 2) \times\left(-x_{1}+x_{2} \leq 1\right) \\ \hline x_{2} \leq 1\end{array}$

Solving MIPs: Step 1 = Linear Programming

$\max x_{2}$	
s.t. $x_{1}+x_{2}$	≤ 1
$-x_{1}-x_{2}$	≤ 1
$+x_{1}-x_{2}$	≤ 1
$-x_{1}+x_{2}$	≤ 1
x_{1}, x_{2}	$\in \mathbb{Z}$

\leftarrow Linear Programming (LP) Relaxation

- LP relaxation always gives a (upper) bound on the MIP:
- If solution of LP is "integer" then you solved the MIP
- LP solvers return "corner" solution, which fixes "multiple optima" (e.g. $\max x_{1}+x_{2}$)
- Homework Question 3: Solve LP relaxation of assignment problem with JuMP. Is solution integer?

Solving MIPs: Step 2 = Branch-and-Bound

\leftarrow Linear Programming (LP) Relaxation
Homework Question 4:
Prove $x_{2} \leq 12 / 7$ for LP Relaxation.

Modern MIP Solvers = B\&B++

GUROBI
 OPTIMIZATION

SCIP 1

CBC

- Really branch-and-cut:
- Use cuts to improve LP relaxation.
- Elaborate heuristics: Rounding +++
- Preprocessing: fixing variables by logical implications.
- Advanced management of B\&B tree.
- Extensive tuning of parameters and techniques.

Cutting Plane Example: Chátal-Gomory Cuts

$$
\left.\begin{array}{l}
P:=\left\{x \in \mathbb{R}^{2}: \begin{array}{c}
x_{1}+x_{2} \leq 3, \\
5 x_{1}-3 x_{2} \leq 3
\end{array}\right\} \\
H:=\{x \in \mathbb{R}^{2}: \underbrace{\mid \cap}_{\in \mathbb{Z}} \\
\text { if } x \in \mathbb{Z}^{2} \\
\left.4 x_{1}+3 x_{2} \leq 10.5\right\} \\
\text { Valid for } H \cap x_{2} \leq\lfloor 10.5\rfloor \\
\text { Valid for } P \cap \mathbb{Z}^{2}
\end{array}\right\} \begin{aligned}
& \begin{array}{l}
(27 / 8)\left(x_{1}+x_{2} \leq 3\right) \quad \Rightarrow 4 x_{1}+3 x_{2} \leq 10.5 \\
+(1 / 8)\left(5 x_{1}-3 x_{2} \leq 3\right)
\end{array}
\end{aligned}
$$

Branch-and-Bound and Cuts (Branch-and-Cut)

Branch-and-Bound and Cuts (Branch-and-Cut)

$$
\begin{aligned}
& \max z:=x_{2} \\
& 3 x_{1}+2 x_{2} \leq 6 \quad x_{2} \leq\lfloor 1.71\rfloor=1 \\
&-2 x_{1}+x_{2} \leq 0 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

No Enumeration = Keep Adding Cuts

- Number of tours for 49 cities $=48!/ 2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
$>10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
- < 1 sec ! Dantzig, Fulkerson and Johnson Li in 54'
- This is how DFJ solved the problem by hand in 54'
- In practice Branch-and-Cut is better.
- More details in Concord TSP App
- Cutting plane tutorial for TSP

- http://www.math.uwaterloo.ca/tsp/iphone/

Easy Problems : LP Relaxation Always Integral

Consequence of LP duality: Kőnig's theorem

- Largest Matching
- Pick edges, at most one edge per node

- Smallest Node Cover
- Pick nodes that touch all edges

Classes and Links

- juli̊á , JuMP and Optimization - https://github.com/JuliaOpt/JuMP.jl
- http://www.juliaopt.org
- 15.053 Optimization Methods in Business Analytics
- Modeling and computation
- Instructor: James B. Orlin
- Spring 2018: http://mit.edu/15.053/www/
- 18.453 Combinatorial Optimization
- Theory and algorithms
- Instructor: Michel Goemans
- Spring 2017 : http://www-math.mit.edu//goemans/18453s17/18453.htm|

MIP \& Daily Fantasy Sports

Example Entry

LINEUP			Avg. Rem. I Player: \$0 Rem. Salary: \$0		
pos	PLAYER	OPP	FPPG	SALARY	
C	Jussi Jokinen	Fla@Anh	3.1	\$5,300	\%
C	Brandon Sutter	Pit@Van	3.0	\$4,400	\%
W	Nikolaj Ehlers	Wpg@Tor	3.9	\$4,800	*
w	Daniel Sedin ${ }^{\text {P }}$	Pit@Van	3.8	\$6,400	*
w	Radim Vrbata ${ }_{\text {E }}$	Pit@Van	3.4	\$5,800	*
D	Brian Campbell ${ }^{\text {a }}$	Fla@Anh	2.6	\$4,100	*
D	Morgan Rielly ${ }_{\text {P }}^{\text {P }}$	Wpg@Tor	3.5	\$4,200	*
G	Corey Crawford P P	StL@Chi	6.3	\$7,800	*
UTIL	Blake Wheeler [${ }^{\text {P }}$	Wpg@Tor	4.8	\$7,200	*

\$55K Sniper Payoff Structure

Building a Lineup

MIP Formulation

- L lineups : indexed by l
- 9 players per lineup: indexed by p
- Decision variables

$$
x_{p l}= \begin{cases}1, & \text { if player } p \text { in lineup } l \\ 0, & \text { otherwise }\end{cases}
$$

Basic Feasibility

- Basic constraints:
- 9 different players
- Salary less than \$50,000

LINEUP

$$
\begin{aligned}
& \sum_{p=1}^{N} c_{p} x_{p l} \leq \$ 50,000, \quad \text { (budget constraint) } \\
& \sum_{p=1}^{N} x_{p l}=9, \quad \text { (lineup size constraint) } \\
& x_{p l} \in\{0,1\}, \quad 1 \leq p \leq N
\end{aligned}
$$

Position Feasibility

- Between 2 and 3 centers
- Between 3 and 4 wingers
- Between 2 and 3 defensemen
- 1 goalie

Position constraints

$$
\begin{aligned}
& 2 \leq \sum_{p \in C} x_{p l} \leq 3, \quad \quad(\text { center constraint) } \\
& 3 \leq \sum_{u \in W} x_{p l} \leq 4, \quad(\text { winger constraint) } \\
& 2 \leq \sum_{u \in D} x_{p l} \leq 3, \quad \text { (defensemen constraint) } \\
& \sum_{u \in G} x_{p l}=1 \quad \text { (goalie constraint) }
\end{aligned}
$$

Team Feasibility

- At least 3 different NHL teams

Team constraints

Maximize Points

- Forecasted points for player $\mathrm{p}: f_{p}$

Score type	Points
Goal	3
Assist	2
Shot on Goal	0.5
Blocked Shot	0.5
Short Handed Point Bonus (Goal/Assist)	1
Shootout Goal	0.2
Hat Trick Bonus	1.5
Win (goalie only)	3
Save (goalie only)	0.2
Goal allowed (goalie only)	-1
Shutout Bonus (goalie only)	2

Table 1 Points system for NHL contests in DraftKings.

Points Objective Function

Lineup

Need > 38 points for a chance to win

Increase variance to have a chance

Structural Correlations: Teams

Structural Correlations: Lines

- Goal $=3 \mathrm{pt}$, assist $=2 \mathrm{pt}$

Structural Correlations: Lines = Stacking

- At least 1 complete line (3 players per line)
- At least 2 partial lines (at least 2 players per line)

1 complete line constraint

$$
\begin{aligned}
& 3 v_{i} \leq \sum_{p \in L_{i}} x_{p l}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} \\
& \sum_{i=1}^{N_{L}} v_{i} \geq 1 \\
& v_{i} \in\{0,1\}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} .
\end{aligned}
$$

2 partial lines constraint

$$
\begin{aligned}
& 2 w_{i} \leq \sum_{p \in L_{i}} x_{p l}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} \\
& \sum_{i=1}^{N_{L}} w_{i} \geq 2 \\
& w_{i} \in\{0,1\}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} .
\end{aligned}
$$

Structural Correlations : Goalie Against Opposing Players

Structural Correlations : Goalie Against Opposing Players

- No skater against goalie

No skater against goalie constraint

Good, but not great chance

Play many diverse Lineups

- Make sure lineup I has no more than γ players in common with lineups 1 to l-1

Diversity constraint

$$
\sum_{p=1}^{N} x_{p k}^{*} x_{p l} \leq \gamma, k=1, \ldots, l-1
$$

Were we able to do it?

November 15, 2015 November 16, 2015 November 17, 2015 November 23, 2015

200 lineups

Policy Change

200 lineups -> 100 lineups

Were we able to continue it?

The Greater Boston $\underset{\text { BANK }}{\text { FoOd }}$

> \$15K

December 12, 2015

100 lineups

juluia

How can you do it?

JuMP

Download Code from Github:

https://github.com/dscotthunter/Fantasy-Hockey-IP-Code

http://arxiv.org/pdf/1604.01455v1.pdf

Performance Time < 30 Minutes

Solver

