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Science and technology have 
always amazed us with their 
powers and ability to trans-
form our world and our lives. 

However, many results, particularly 
over the past century or so, have dem-
onstrated that there are limits to the 
abilities of science. Some of the most 
celebrated ideas in all of science, such 
as aspects of quantum mechanics and 
chaos theory, have implications for 
informing scientists about what can-
not be done. Researchers have discov-
ered boundaries beyond which science 
cannot go and, in a sense, science has 
found its limitations. Although these 
results are found in many different 
fields and areas of science, mathemat-
ics, and logic, they can be grouped and 
classified into four types of limitations. 
By closely examining these classifica-
tions and the way that these limita-
tions are found, we can learn much 
about the very structure of science. 

Discovering Limitations 
The various ways that some of these 
limitations are discovered is in itself 
informative. One of the more interest-
ing means of discovering a scientific 
limitation is through paradoxes. The 
word paradox is used in various ways 
and has several meanings. For our 
purposes, a paradox is present when 
an assumption is made and then, with 
valid reasoning, a contradiction or fal-

sity is derived. We can write this as:
AssumptionàContradiction. 
Because contradictions and falsehoods 
need to be avoided, and because only 
valid reasoning was employed, it must 
be that the assumption was incorrect. 
In a sense, a paradox is a proof that 
the assumption is not a valid part of 
reason. If it were, in fact, a valid part of 
reason, then no contradiction or false-
hood could have been derived. 

A classic example of a paradox is 
a cute little puzzle called the barber 
paradox. It concerns a small, isolated 
village with a single barber. The vil-
lage has the following strict rule: If you 
cut your own hair, you cannot go to 
the barber, and if you go to the barber, 
you cannot cut your own hair. It is one 
or the other, but not both. Now, pose 
the simple question: Who cuts the bar-
ber’s hair? If the barber cuts his own 
hair, then he is not permitted to go to 
the barber. But he is the barber! If, on 
the other hand, he goes to the barber, 
then he is cutting his own hair. This 
outcome is a contradiction. We might 
express this paradox as:
Village with ruleàContradiction. 

The resolution to the barber paradox 
is rather simple: The village with this 
strict rule does not exist. It cannot exist 
because it would cause a contradic-
tion. There are a lot of ways of getting 
around the rule: The barber could be 
bald, or an itinerant barber could come 
to the village every few months, or the 
wife of the barber could cut the bar-
ber’s hair. But all these are violations 
of the rule. The main point is that the 
physical universe cannot have such a 
village with such a rule. Such playful 
paradox games may seem superficial, 
but they are transparent ways of ex-
ploring logical contradictions that can 

exist in the physical world, where dis-
obeying the rules is not an option.

A special type of paradox is called 
a self-referential paradox, which results 
from something referring to itself. The 
classic example of a self-referential 
paradox is the liar paradox. Consider 
the sentence, “This sentence is false.” 
If it is true, then it is false, and if it is 
false, then because it says it is false, it 
is true—a clear contradiction. This par-
adox arises because the sentence refers 
to itself. Whenever there is a system 
in which some of its parts can refer 
to themselves, there will be self-refer-
ence. These parts might be able to ne-
gate some aspect of themselves, result-
ing in a contradiction. Mathematics, 
sets, computers, quantum mechanics,  
and several other systems possess 
such self-reference, and hence have as-
sociated limitations. 

Some of the stranger aspects of 
quantum mechanics can be seen as 
coming from self-reference. For ex-
ample, take the dual nature of light. 
One can perform experiments in which 
light acts like a wave, and others in 
which it acts like a particle. So which 
is it? The answer is that the nature of 
light depends upon which experiment 
is performed. Was a wave experiment 
performed, or was a particle experi-
ment performed? This duality ushers 
a whole new dimension into science. 
In classical science, the subject of an 
experiment is a closed system that re-
searchers poke and prod in order to de-
termine its properties. Now, with quan-
tum mechanics, the experiment—and 
more important, the experimenter— 
become part of the system being mea-
sured. By the act of measuring the 
system, we affect it. If we measure for 
waves, we affect the system so that we 
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“A computer would have to 
check all these possible routes 
to find the shortest one.” 



MIP	=	Avoid	Enumeration

• Number	of	tours	for	49	cities	
• Fastest	supercomputer
• Assuming	one	floating	point	operation	per	tour:

• How	long	does	it	take	on	an	iphone?
– Less	than	a	second!
– 4	iterations	of	cutting	plane	method!
– Dantzig,	Fulkerson	and	Johnson	1954	did	it	by	hand!
– For	more	info	see	tutorial	in	ConcordeTSP app
– Cutting	planes	are	the	key	for	effectively	solving	(even	NP-
hard)	MIP	problems	in	practice.

= 48!/2 ⇡ 1060

⇡ 10

17
flops

> 10

35
years ⇡ 10

25
times the age of the universe!



Using	IP	to	visit	Germany

45	cities(1832) 120	cities(1977) 15,112	cities(2004)

http://www.math.uwaterloo.ca/tsp/d15sol/dhistory.html



50+	Years	of	MIP	=	Significant	Solver	Speedups	

• Algorithmic	Improvements	(Machine	Independent):
– CPLEX	v1.2	(1991)	– v11	(2007):	29,000x	speedup
– Gurobi v1	(2009)	– v6.5	(2015):	48.7x	speedup	
– Commercial,	but	free	for	academic	use

• (Reasonably)	effective	free	/	open	source	solvers:
– GLPK,	CBC	and	SCIP	(free	only	for	non-commercial)	

• Easy	to	use,	fast	and	versatile	modeling	languages
– Julia	based	JuMP modelling	language

• Linear	MIP	solvers	very	mature	and	effective:
– Convex	nonlinear	MIP	getting	there	(quadratic	nearly	there)



Matching

Treated Units: T = {t1, . . . , tT }
Control Units: C = {c1, . . . , cC}
Observed Covariates: P = {p1, . . . , pP }

Covariate Values: x
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3.1. Complexity of Cardinality Matching

Proposition 1. Cardinality matching is polynomially solvable for if the family of balancing sets

{Si}bi=1

has b 2 and is NP-complete if b > 2.

Say why the NP hardness result is not very representable. Also mention that the polynomiality

result is stronger. We give an integral formulation for the case b 2 which means that it should be

strong if we combine sub-formulations for b= 2 to obtain a formulation for a problem with b > 2.

3.2. Formulations

3.2.1. Existing Formulation

max
X

t2T

X

c2C

mt,c (1a)

s.t.

X

t2T

mt,c  1, 8c2 C (1b)

X

c2C

mt,c  1, 8t2 T (1c)

mt,c = 0 8t, c xt 6= xc (1d)

mt,c 2 {0,1} 8t2 T , c2 C. (1e)

max
X

t2T

X

c2C

mt,c (2a)

s.t.

X

t2T

mt,c  1, 8c2 C (2b)

X

c2C

mt,c  1, 8t2 T (2c)

X

t2T

X

c2C

x

t
pmt,c =

X

c2C

X

t2T

x

c
pmt,c 8p2P (2d)

mt,c 2 {0,1} 8t2 T , c2 C. (2e)

Zubizarreta et al. (2014)

max
X

t2T

X

c2C

mt,c (3a)

s.t.

X

t2T

mt,c  1, 8c2 C (3b)

X

c2C

mt,c  1, 8t2 T (3c)

Maximum	Cardinality	Exact	Matching

• Solve	time	for	truncated	Lalonde	CPS	429	=	0.001	s
• Why?	Can	solve	relaxation.

0  mt,c  1



Maximum	Cardinality	Marginal	Means

• Solve	time	for	truncated	Lalonde	CPS	429	=	444	s
• Why?	One	reason	=	relaxation	has	fractions.
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3.1. Complexity of Cardinality Matching

Proposition 1. Cardinality matching is polynomially solvable for if the family of balancing sets

{Si}bi=1

has b 2 and is NP-complete if b > 2.

Say why the NP hardness result is not very representable. Also mention that the polynomiality

result is stronger. We give an integral formulation for the case b 2 which means that it should be
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Maximum	Cardinality	Fine	Balance,	Take	1

max

X
t2T

X
c2C

mt,c

s.t.
X

t2T
mp

t,c  1, 8c 2 C, p 2 P
X

c2C
mp

t,c  1, 8t 2 T , p 2 P
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t,c = 0 8t, c x

t
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c
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X
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X
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X
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X
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mq
t,c 8t 2 T , p, q 2 P

mp
t,c 2 {0, 1} 8t 2 T , c 2 C, p 2 P.

• Solve	time	for	truncated	Lalonde	CPS	429	=	0.81	s
• Why?	One	reason	=	relaxation	has	“fewer”	fractions.
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Linear	Programming	(LP)	Relaxation
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Cutting	Plane	Example:	Chátal-Gomory Cuts

P :=

(
x 2 R2 :

x1 + x2 3,

5x1 � 3x2 3

)

1

0 1 2
0

2

3✓

H :=
�
x 2 R2 : 4x1 + 3x2  10.5

 
4x1 + 3x2| {z }

2 Z
if x 2 Z2

 10.5

Valid for H \ Z2
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x1, x2 � 0

x1, x2 2 Z
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Partial	Solves	and	GAP
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GAP =100⇥ |bestnode� bestinteger|
10

�10
+ |bestinteger|

BBGAP =100⇥ |1.5� 0|
10�10 + |0| = 1.5⇥ 1012

(1)	FRAC
z = 1.71

(2)	INT
z = 0

(3)	FRAC
z = 1.5

x1  0
x1 � 1

BB+ GAP =100⇥ |1.5� 1|
10�10 + |1| = 50%



Maximum	Cardinality	Marginal	Means

• Solve	time	for	truncated	Lalonde	CPS	429	=	444	s
• Optimal	=	17,	LP	Relaxation	=	19.35
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has b 2 and is NP-complete if b > 2.
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Maximum	Cardinality	Marginal	Means
Root relaxation: objective 1.935024e+01, 1947 iterations, 0.16 seconds

Nodes    |    Current Node |     Objective Bounds |     Work
Expl Unexpl |  Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0     0   19.35024    0   10   -0.00000   19.35024      - - 0s
0     0   19.30273    0   20   -0.00000   19.30273      - - 1s

.

.

.
0     2   19.29748    0   25   -0.00000   19.29748      - - 4s
4     5   19.20830    3   23   -0.00000   19.29273      - 1407    5s

.

.

.
1140   763   18.56894   18   23   -0.00000   19.16557      - 340   51s

H 1149   726                       4.0000000   19.16557   379%   344   51s
.
.
.

*23876  7827              71      17.0000000   18.00366  5.90%   150  443s

Cutting planes:  Gomory: 1  Flow cover: 1

Explored 25301 nodes (3601039 simplex iterations) in 443.89 seconds

Optimal solution found (tolerance 1.00e-04)
Best objective 1.700000000000e+01, best bound 1.700000000000e+01, gap 0.0%

Better Optimal
Solution

Feasible Solution
Bound

(
“Black Magic”



Maximum	Cardinality	Fine	Balance,	Take	1

max

X
t2T

X
c2C

mt,c

s.t.
X

t2T
mp

t,c  1, 8c 2 C, p 2 P
X

c2C
mp

t,c  1, 8t 2 T , p 2 P

mp
t,c = 0 8t, c x

t
p 6= x

c
p, p 2 P

X
t2T

mp
t,c =

X
t2T

mq
t,c 8c 2 C, p, q 2 P

X
c2C

mp
t,c =

X
c2C

mq
t,c 8t 2 T , p, q 2 P

mp
t,c 2 {0, 1} 8t 2 T , c 2 C, p 2 P.

• Solve	time	for	truncated	Lalonde	CPS	429	=	0.81	s
• Optimal	=	10,	LP	Relaxation	=	11



Maximum	Cardinality	Fine	Balance,	Take	1
Root relaxation: objective 1.100000e+01, 1490 iterations, 0.03 seconds

Nodes    |    Current Node |     Objective Bounds |     Work
Expl Unexpl |  Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0     0   11.00000    0  158   -0.00000   11.00000      - - 0s
0     0   11.00000    0  164   -0.00000   11.00000      - - 0s
0     0   11.00000    0  164   -0.00000   11.00000      - - 0s

H    0     0                      10.0000000   11.00000  10.0%     - 0s
.
.
.
0     2   11.00000    0  111   10.00000   11.00000  10.0%     - 0s

Cutting planes:  Zero half: 2

Explored 8 nodes (9933 simplex iterations) in 0.78 seconds
Optimal solution found (tolerance 1.00e-04)
Best objective 1.000000000000e+01, best bound 1.000000000000e+01, gap 0.0%

Better Optimal
Solution

Feasible Solution Bound



Maximum	Cardinality	Fine	Balance,	Take	1

max
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X
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X
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t,c 2 {0, 1} 8t 2 T , c 2 C, p 2 P.

• Solve	time	for	truncated	Lalonde	CPS	429	=	0.81	s
• Scalability?		Size	=		|T |⇥ |C|⇥ |P|



Maximum	Cardinality	Fine	Balance,	Take	2

• Solve	time	for	truncated	Lalonde	CPS	429	=	0.61	s
• Scalability?		Size	=		

max

X

t2T

X

c2C
mt,c

s.t.
X

t2T
mt,c  1, 8c 2 C

X

c2C
mt,c  1, 8t 2 T

X

t2Tp,k

X

c/2Cp,k

mt,c =

X

t/2Tp,k

X

c2Cp,k

mt,c 8p 2 P, k 2 K(p)

mt,c 2 {0, 1} 8t 2 T , c 2 C.

K(p) = {xc
p}c2P [ {xt

p}t2T

Cp,k = {c 2 C : xc
p = k}

Tp,k = {t 2 T : xt
p = k}

|T |⇥ |C|+ |P|



Take	1	Revisited
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• Solve	time	for	truncated	Lalonde	CPS	429	=	0.81	s
• Scalability?		Size	=		|T |⇥ |C|⇥ |P|



Take	1	Revisited

max

X

t2T
xt

s.t.

X

t2Tp,k

m

p
t,c = yc, 8p 2 P, k 2 K(p), c 2 Cp,k

X

c2Cp,k

m

p
t,c = xt, 8S 2 F , k 2 K(p), t 2 Tp,k

m

p
t,c 2 {0, 1} 8p 2 P, k 2 K(p), t 2 Tp,k, c 2 Cp,k
xt 2 {0, 1} 8t 2 T
yc 2 {0, 1} 8c 2 C.



Maximum	Cardinality	Fine	Balance,	Take	3

• Solve	time	for	truncated	Lalonde	CPS	429	=	0.006	s
• Scalability?		Size	=		

K(p) = {xc
p}c2P [ {xt

p}t2T

Cp,k = {c 2 C : xc
p = k}

Tp,k = {t 2 T : xt
p = k}

max

X

t2T
xt

s.t.

X

t2T
xt =

X

c2C
yc,

X

t2Tp,k

xt =

X

c2Cp,k

yc, 8p 2 P, k 2 K(p)

xt 2 {0, 1} 8t 2 T
yc 2 {0, 1} 8c 2 C.

|P|⇥ (|T |+ |C|)



Vielma, Ahmed and Nemhauser: Mixed-Integer Models for Piecewise Linear Optimization
Article submitted to ; manuscript no. 3

2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Simple	Formulation	for	Univariate	Functions

z = f(x)
✓
x

z

◆
=

X5

j=1

✓
dj

f(dj)

◆
�j

1 =
X5

j=1
�j

Size = O (# of segments)

, �j � 0

Non-Ideal:	Fractional	Extreme	Points
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Advanced	Formulation	for	Univariate	Functions

z = f(x)
✓
x

z

◆
=

X5

j=1

✓
dj

f(dj)

◆
�j

1 =
X5

j=1
�j

y 2 {0, 1}2

Size = O (log2 # of segments)

, �j � 0

Ideal:	Integral	Extreme	Points
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Figure 2: Examples of triangulations of subsets of 2.
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(a) Continuous function.
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(b) Lower semicontinuous function.

Figure 3: Examples of triangulations of subsets of 2.

13

Extended	Formulation	for	PWL	Functions

S = gr (f) =
k[

i=1

(
(x, z) 2 R2 :

di  x  di+1

mix+ ci = z

)
MC Formulation:

diyi  x

i  di+1yi 8i 2 [k]

mix
i + ciyi = z

i 8i 2 [k]
Xk

i=1
x

i = x

Xk

i=1
z

i = z

Xk

i=1
yi = 1

y 2 {0, 1}k
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f :D ⇢ Rn ! R is to model its epi-

graph given by epi(f) := {(x, z) 2D⇥R : f(x) z}. For example, the epigraph of the function in

Figure 2(a) is depicted in Figure 2(b).
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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Figure 2 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x) 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x) 0 can be modeled as (x, z) 2 epi(f), z  0 and the minimization of

f can be achieved by minimizing z subject to (x, z)2 epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Abstracting	Univariate	Functions

z = f(x)
✓
x

z

◆
=

X5

j=1

✓
dj

f(dj)

◆
�j

1 =
X5

j=1
�j , �j � 0�5 =

T4

1 2 3 4 5

� 2
[4

i=1
Pi ✓ �5

Pi :=
�
� 2 �5 : �j = 0 8j /2 Ti

 

Ti := {i, i+ 1} i 2 {1, . . . , 4}



Abstraction	Works	for	Multivariate	Functions

f(x,y)

y

x

Pi := {� 2 �m : �j = 0 8vj /2 Ti}

� 2
[n

i=1
Pi ✓ �m

vm



•

•

•

• Ti = cliques of a graph

Complete	Abstraction
�V :=

n

� 2 RV
+ :

X

v2V
�v = 1

o

,

Pi =
�
� 2 �V : �v = 0 8v /2 Ti

 



From	Cliques	to	(Complement)	Conflict	Graph

SOS2

1 2 3 4 5



From	Conflict	Graph	to	Bi-clique	Cover

SOS2

1 2 3 4 5

31 2 4 5

2 41 53

+



From	Bi-clique	Cover	to	Formulation

SOS2

1 2 3 4 5

31 2 4 5

2 41 53

+

0  �1 + �5  1� y1

0  �3  y1

0  �4 + �5  1� y2

0  �1 + �2  y2



Ideal	Formulation	from	Bi-clique	Cover

• Conflict	Graph

• Bi-clique	cover

• Formulation X
v2Aj

�v  1� yj 8j 2 [t]
X

v2Bj
�v  yj 8j 2 [t]

y 2 {0, 1}t

��
Aj , Bj

� t

j=1
, Aj , Bj ✓ V

G = (V,E)

E = {(u, v) : u, v 2 V, u 6= v, @i s.t. u, v 2 Ti}

8{u, v} 2 E 9j s.t. u 2 Aj ^ v 2 Bj



Recursive	Construction	of	Cover	for	SOS2,	Step	1

21 3

21 3

Base	case	n=21 :

2 13

Step	1	recursion	:

Reflect	Graph	/	Cover

4 521 3 Stick	Graph	/	Cover

Repeat	for	all	bi-cliques	from	2k-1
to	cover	all	edges	within	first	and	

last	half	of	conflict	graph



Recursive	Construction	of	Cover	for	SOS2,	Step	2

Only	edges	missing	are	those	between	
first	and	last	half	of	conflict	graph

n/2	
+	1

n/2	+	
21 2 n/2 nn-1

Step	2	:	Add	one	more	bi-clique

Cover has log2 n bi-cliques.

For	non-power	of	two	just	delete	extra	nodes.



Grid	Triangulations:	Step	1	=	SOS2	for	Inter-Box

2 41 53

31 2 4 5

2

4

1

5

33

1

2

4

5

Covers	all	arcs	
between	boxes



Grid	Triangulations:	Step	2	=	Ad-hoc	Intra-Box

Covers	all	arcs	
within	boxes

Sometimes	1	
additional	cover



Grid	Triangulations:	Step	2	=	Ad-hoc	Intra-Box

Sometimes	2
additional	covers

Sometimes	more,	but	
always	less	than	9

Simple	rules	to	get	
(near)	optimal	in	Fall	‘16


