Mixed Integer Programming (MIP) for Causal Inference and Beyond

Juan Pablo Vielma
Massachusetts Institute of Technology

Columbia Business School
New York, NY, October, 2016.

Traveling Salesman Problem (TSP): Visit Cities Fast

Traveling Salesman Problem (TSP): Visit Cities Fast

MIP = Avoid Enumeration

- Number of tours for 49 cities $=48!/ 2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
$>10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
- Less than a second!
- 4 iterations of cutting plane method!
- Dantzig, Fulkerson and Johnson 1954 did it by hand!
- For more info see tutorial in ConcordeTSP app
- Cutting planes are the key for effectively solving (even NPhard) MIP problems in practice.

Using IP to visit Germany

45 cities(1832)

120 cities(1977)

15,112 cities(2004)
http://www.math.uwaterloo.ca/tsp/d15sol/dhistory.html

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
- CPLEX v1.2 (1991) - v11 (2007): 29,000x speedup
- Gurobi v1 (2009) - v6.5 (2015): 48.7x speedup
- Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
- GLPK, CBC and SCIP (free only for non-commercial)
- Easy to use, fast and versatile modeling languages
- Julia based JuMP modelling language
- Linear MIP solvers very mature and effective:
- Convex nonlinear MIP getting there (quadratic nearly there)

Matching

Treated Units: $\mathcal{T}=\left\{t_{1}, \ldots, t_{T}\right\}$
Control Units: $\mathcal{C}=\left\{c_{1}, \ldots, c_{C}\right\}$
Observed Covariates: $\mathcal{P}=\left\{p_{1}, \ldots, p_{P}\right\}$
Covariate Values: $\mathbf{x}^{t}=\left(x_{p}^{t}\right)_{p \in \mathcal{P}}, \quad t \in \mathcal{T}$

$$
\mathbf{x}^{c}=\left(x_{p}^{c}\right)_{p \in \mathcal{P}}, \quad c \in \mathcal{C}
$$

Maximum Cardinality Exact Matching

$$
\begin{aligned}
& \max \quad \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c} \\
& \text { s.t. } \\
& \sum_{t \in \mathcal{T}} m_{t, c} \leq 1, \quad \forall c \in \mathcal{C} \\
& \sum_{c \in \mathcal{C}} m_{t, c} \leq 1, \quad \forall t \in \mathcal{T} \\
& m_{t, c}=0 \quad \forall t, c \quad \mathbf{x}^{t} \neq \mathbf{x}^{c} \\
& 0 \leq m_{t, c} \leq 1 \text { molve time for truncated Lalonde CPS } 429=0.001 \mathrm{~s}
\end{aligned}
$$

- Why? Can solve relaxation.

Maximum Cardinality Marginal Means

$\max \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c}$
s.t.

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} m_{t, c} & \leq 1, & \forall c \in \mathcal{C} \\
\sum_{c \in \mathcal{C}} m_{t, c} & \leq 1, & \forall t \in \mathcal{T} \\
\sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} \mathbf{x}_{p}^{t} m_{t, c} & =\sum_{c \in \mathcal{C}} \sum_{t \in \mathcal{T}} \mathbf{x}_{p}^{c} m_{t, c} & \forall p \in \mathcal{P} \\
m_{t, c} & \in\{0,1\} & \forall t \in \mathcal{T}, \quad c \in \mathcal{C}
\end{aligned}
$$

- Solve time for truncated Lalonde CPS $429=444 \mathrm{~s}$
- Why? One reason = relaxation has fractions.

Maximum Cardinality Fine Balance, Take 1

$\max \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c}$
s.t.

$$
\begin{array}{rlrl}
\sum_{t \in \mathcal{T}} m_{t, c}^{p} \leq 1, & \forall c \in \mathcal{C}, p \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p} \leq 1, & \forall t \in \mathcal{T}, p \in \mathcal{P} \\
m^{p}{ }_{t, c}=0 & \forall t, c \quad \mathbf{x}_{p}^{t} \neq \mathbf{x}_{p}^{c}, p \in \mathcal{P} \\
\sum_{t \in \mathcal{T}} m_{t, c}^{p}=\sum_{t \in \mathcal{T}} m_{t, c}^{q} & \forall c \in \mathcal{C}, p, q \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p}=\sum_{c \in \mathcal{C}} m_{t, c}^{q} & & \forall t \in \mathcal{T}, p, q \in \mathcal{P} \\
m_{t, c}^{p} \in\{0,1\} & & \forall t \in \mathcal{T}, c \in \mathcal{C}, p \in \mathcal{P} .
\end{array}
$$

- Solve time for truncated Lalonde CPS $429=0.81 \mathrm{~s}$
- Why? One reason = relaxation has "fewer" fractions.

Basic Branch-and-Bound

Stronger Formulations = Faster Solves ?

Cutting Plane Example: Chátal-Gomory Cuts

Branch-and-Bound and Cuts (Branch-and-Cut)

Partial Solves and GAP

$$
\begin{aligned}
& G A P=100 \times \frac{\mid \text { bestnode }- \text { bestinteger } \mid}{10^{-10}+\mid \text { bestinteger } \mid} \\
& B B G A P=100 \times \frac{|1.5-0|}{10^{-10}+|0|}=1.5 \times 10^{12} \\
& B B^{+} G A P=100 \times \frac{|1.5-1|}{10^{-10}+|1|}=50 \%
\end{aligned}
$$

Maximum Cardinality Marginal Means

$\max \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c}$
s.t.

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} m_{t, c} & \leq 1, & \forall c \in \mathcal{C} \\
\sum_{c \in \mathcal{C}} m_{t, c} & \leq 1, & \forall t \in \mathcal{T} \\
\sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} \mathbf{x}_{p}^{t} m_{t, c} & =\sum_{c \in \mathcal{C}} \sum_{t \in \mathcal{T}} \mathbf{x}_{p}^{c} m_{t, c} & \forall p \in \mathcal{P} \\
m_{t, c} & \in\{0,1\} & \forall t \in \mathcal{T}, \quad c \in \mathcal{C}
\end{aligned}
$$

- Solve time for truncated Lalonde CPS $429=444 \mathrm{~s}$
- Optimal = 17, LP Relaxation = 19.35

Maximum Cardinality Marginal Means

Maximum Cardinality Fine Balance, Take 1

$\max \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c}$
s.t.

$$
\begin{array}{rlrl}
\sum_{t \in \mathcal{T}} m_{t, c}^{p} \leq 1, & & \forall c \in \mathcal{C}, p \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p} \leq 1, & & \forall t \in \mathcal{T}, p \in \mathcal{P} \\
m^{p}{ }_{t, c}=0 & & \forall t, c \quad \mathbf{x}_{p}^{t} \neq \mathbf{x}_{p}^{c}, p \in \mathcal{P} \\
\sum_{t \in \mathcal{T}} m_{t, c}^{p}=\sum_{t \in \mathcal{T}} m_{t, c}^{q} & \forall c \in \mathcal{C}, p, q \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p}=\sum_{c \in \mathcal{C}} m_{t, c}^{q} & & \forall t \in \mathcal{T}, p, q \in \mathcal{P} \\
m_{t, c}^{p} \in\{0,1\} & & \forall t \in \mathcal{T}, c \in \mathcal{C}, p \in \mathcal{P} .
\end{array}
$$

- Solve time for truncated Lalonde CPS $429=0.81 \mathrm{~s}$
- Optimal = 10, LP Relaxation = 11

Maximum Cardinality Fine Balance, Take 1

Maximum Cardinality Fine Balance, Take 1

$\max \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c}$
s.t.

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} m_{t, c}^{p} \leq 1, & & \forall c \in \mathcal{C}, p \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p} \leq 1, & & \forall t \in \mathcal{T}, p \in \mathcal{P} \\
m^{p}{ }_{t, c}=0 & & \forall t, c \quad \mathbf{x}_{p}^{t} \neq \mathbf{x}_{p}^{c}, p \in \mathcal{P} \\
\sum_{t \in \mathcal{T}} m_{t, c}^{p}=\sum_{t \in \mathcal{T}} m_{t, c}^{q} & & \forall c \in \mathcal{C}, p, q \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p}=\sum_{c \in \mathcal{C}} m_{t, c}^{q} & & \forall t \in \mathcal{T}, p, q \in \mathcal{P} \\
m_{t, c}^{p} \in\{0,1\} & & \forall t \in \mathcal{T}, c \in \mathcal{C}, p \in \mathcal{P} .
\end{aligned}
$$

- Solve time for truncated Lalonde CPS $429=0.81 \mathrm{~s}$
- Scalability? Size $=|\mathcal{T}| \times|\mathcal{C}| \times|\mathcal{P}|$

Maximum Cardinality Fine Balance, Take 2

- Solve time for truncated Lalonde CPS $429=0.61 \mathrm{~s}$
- Scalability? Size $=|\mathcal{T}| \times|\mathcal{C}|+|\mathcal{P}|$

Take 1 Revisited

$\max \quad \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t, c}$
s.t.

$$
\begin{array}{rlrl}
\sum_{t \in \mathcal{T}} m_{t, c}^{p} & \leq 1, & & \forall c \in \mathcal{C}, p \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p} \leq 1, & & \forall t \in \mathcal{T}, p \in \mathcal{P} \\
m^{p}{ }_{t, c} & =0 & \forall t, c \quad \mathbf{x}_{p}^{t} \neq \mathbf{x}_{p}^{c}, p \in \mathcal{P} \\
\sum_{t \in \mathcal{T}} m_{t, c}^{p} & =\sum_{t \in \mathcal{T}} m_{t, c}^{q} & & \forall c \in \mathcal{C}, p, q \in \mathcal{P} \\
\sum_{c \in \mathcal{C}} m_{t, c}^{p} & =\sum_{c \in \mathcal{C}} m_{t, c}^{q} & & \forall t \in \mathcal{T}, p, q \in \mathcal{P} \\
m_{t, c}^{p} & \in\{0,1\} & & \forall t \in \mathcal{T}, c \in \mathcal{C}, p \in \mathcal{P}
\end{array}
$$

- Solve time for truncated Lalonde CPS $429=0.81 \mathrm{~s}$
- Scalability? Size $=|\mathcal{T}| \times|\mathcal{C}| \times|\mathcal{P}|$

Take 1 Revisited

$\max \quad \sum_{t \in \mathcal{T}} x_{t}$
s.t.

$$
\begin{array}{rlrl}
\sum_{t \in \mathcal{T}_{p, k}} m_{t, c}^{p} & =y_{c}, & \forall p \in \mathcal{P}, \quad k \in \mathcal{K}(p), \quad c \in \mathcal{C}_{p, k} \\
\sum_{c \in \mathcal{C}_{p, k}} m_{t, c}^{p} & =x_{t}, \quad \forall \mathcal{S} \in \mathcal{F}, \quad k \in \mathcal{K}(p), \quad t \in \mathcal{T}_{p, k} \\
m_{t, c}^{p} & \in\{0,1\} & \forall p \in \mathcal{P}, \quad k \in \mathcal{K}(p), \quad t \in \mathcal{T}_{p, k}, \quad c \in \mathcal{C}_{p, k} \\
x_{t} & \in\{0,1\} & \forall t \in \mathcal{T} & \\
y_{c} & \in\{0,1\} & \forall c \in \mathcal{C}
\end{array}
$$

Maximum Cardinality Fine Balance, Take 3

$\max \sum_{t \in \mathcal{T}} x_{t}$
s.t.

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} x_{t} & =\sum_{c \in \mathcal{C}} y_{c}, & & \\
\sum_{t \in \mathcal{T}_{p, k}} x_{t} & =\sum_{c \in \mathcal{C}_{p, k}} y_{c}, & & \forall p \in \mathcal{P}, \quad k \in \mathcal{K}(p) \\
x_{t} & \in\{0,1\} & & \forall t \in \mathcal{T} \\
y_{c} & \in\{0,1\} & & \forall c \in \mathcal{C}
\end{aligned}
$$

- Solve time for truncated Lalonde CPS $429=0.006 \mathrm{~s}$
- Scalability? Size $=|\mathcal{P}| \times(|\mathcal{T}|+|\mathcal{C}|)$

Simple Formulation for Univariate Functions

$$
z=f(x)
$$

$$
\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j}
$$

$$
1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0
$$

$$
y \in\{0,1\}^{4}, \quad \sum_{i=1}^{4} y_{i}=1
$$

$$
0 \leq \lambda_{1} \leq y_{1}
$$

$$
0 \leq \lambda_{2} \leq y_{1}+y_{2}
$$

$$
0 \leq \lambda_{3} \leq y_{2}+y_{3}
$$

Size $=O$ (\# of segments)

$$
0 \leq \lambda_{4} \leq y_{3}+y_{4}
$$

Non-Ideal: Fractional Extreme Points
$0 \leq \lambda_{5} \leq y_{4}$

Advanced Formulation for Univariate Functions

$$
z=f(x)
$$

$$
\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j}
$$

$$
1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0
$$

$$
y \in\{0,1\}^{2}
$$

$$
0 \leq \lambda_{1}+\lambda_{5} \leq 1-y_{1}
$$

$$
0 \leq \lambda_{3} \quad \leq y_{1}
$$

$$
0 \leq \lambda_{4}+\lambda_{5} \leq 1-y_{2}
$$

Size $=O$ ($\log _{2} \#$ of segments $)$
$0 \leq \lambda_{1}+\lambda_{2} \leq y_{2}$
Ideal: Integral Extreme Points

Extended Formulation for PWL Functions

$S=\operatorname{gr}(f)=\bigcup_{i=1}^{k}\left\{(x, z) \in \mathbb{R}^{2}: \begin{array}{c}d_{i} \leq x \leq d_{i+1} \\ m_{i} x+c_{i}=z\end{array}\right\} \quad$ MC Formulation:

$$
\begin{array}{rlrl}
d_{i} y_{i} \leq x^{i} & \leq d_{i+1} y_{i} & \forall i \in[k] \\
m_{i} x^{i}+c_{i} y_{i} & =z^{i} & & \forall i \in[k] \\
\sum_{i=1}^{k} x^{i} & =x & & \\
\sum_{i=1}^{k} z^{i} & =z & & \\
\sum_{i=1}^{k} y_{i} & =1 & & \\
y & \in\{0,1\}^{k} & &
\end{array}
$$

Abstracting Univariate Functions

$$
\lambda \in \bigcup_{i=1}^{4} P_{i} \subseteq \Delta^{5}
$$

Abstraction Works for Multivariate Functions

$$
P_{i}:=\left\{\lambda \in \Delta^{m}: \lambda_{j}=0 \quad \forall v_{j} \notin T_{i}\right\}
$$

Complete Abstraction

- $\Delta^{V}:=\left\{\lambda \in \mathbb{R}_{+}^{V}: \sum_{v \in V} \lambda_{v}=1\right\}$,
- $P_{i}=\left\{\lambda \in \Delta^{V}: \lambda_{v}=0 \quad \forall v \notin T_{i}\right\}$
- $\lambda \in \bigcup_{i=1}^{n} P_{i}$
- $T_{i}=$ cliques of a graph

From Cliques to (Complement) Conflict Graph

From Conflict Graph to Bi-clique Cover

From Bi-clique Cover to Formulation

$$
\begin{aligned}
& 0 \leq \lambda_{1}+\lambda_{5} \leq 1-y_{1} \\
& 0 \leq \lambda_{3} \quad \leq y_{1}
\end{aligned}
$$

$$
0 \leq \lambda_{4}+\lambda_{5} \leq 1-y_{2}
$$

$0 \leq \lambda_{1}+\lambda_{2} \leq y_{2}$

Ideal Formulation from Bi-clique Cover

- Conflict Graph $G=(V, E)$
$E=\left\{(u, v): u, v \in V, u \neq v, \quad \nexists i\right.$ s.t. $\left.u, v \in T_{i}\right\}$
- Bi-clique cover $\left\{\left(A^{j}, B^{j}\right)\right\}_{j=1}^{t}, \quad A^{j}, B^{j} \subseteq V$

$$
\forall\{u, v\} \in E \quad \exists j \text { s.t. } u \in A^{j} \wedge v \in B^{j}
$$

- Formulation

$$
\begin{aligned}
\sum_{v \in A^{j}} \lambda_{v} & \leq 1-y_{j} & \forall j \in[t] \\
\sum_{v \in B_{j}^{j}} \lambda_{v} & \leq y_{j} & \forall j \in[t] \\
y & \in\{0,1\}^{t} &
\end{aligned}
$$

Recursive Construction of Cover for SOS2, Step 1

Base case $n=2^{1}$:

Step 1 recursion :

Recursive Construction of Cover for SOS2, Step 2

Only edges missing are those between first and last half of conflict graph

Step 2 : Add one more bi-clique

Cover has $\log _{2} n$ bi-cliques.

For non-power of two just delete extra nodes.

Grid Triangulations: Step 1 = SOS2 for Inter-Box

Covers all arcs
between boxes

Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Covers all arcs
within boxes

Sometimes 1 additional cover

Grid Triangulations: Step 2 = Ad-hoc Intra-Box

Sometimes 2 additional covers

Sometimes more, but always less than 9

Simple rules to get (near) optimal in Fall '16

