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Figure 2: Approximating with continuous piecewise linear functions.

example section I.1.4 of [35]) given by

min z (3a)
s.t.

K�

k=0

dkλk = x (3b)

K�

k=0

fkλk = z (3c)

K�

k=0

λk = 1 (3d)

λ0 ≤ y1 (3e)
λk ≤ (yk + yk+1) ∀k ∈ {1, . . . ,K − 1} (3f)
λK ≤ yK (3g)

K�

k=1

yk = 1 (3h)

λk ≥ 0 ∀k ∈ {0, . . . ,K} (3i)
yk ∈ {0, 1} ∀k ∈ {1, . . . ,K} (3j)

where fk = f(dk).
To extend this model to the inclusion of piecewise linear functions in the constraints of a problem such

as (2) we need to understand the meaning of constraints (3b)–(3j). It is not hard to see that for the
function in Figure 1 points (x, z) which comply with (3b)–(3j) for some λ and y are exactly the points in
the dashed line of the figure. We can then think of constraints (3b)–(3j) as a model of the graph of function
f . We will formalize this geometric interpretation in Section 2.1 where we will also formalize the concept of
modeling a piecewise linear function. With modeling in mind we will give a formal definition of a continuous
piecewise linear function in Section 2.2. This definition will make use of a higher dimensional extension of the
subdivision of [0, u] into intervals (see for example [28, 32, 48]), which is usually taken to be a triangulation.
For this reason, we will study these in section Section 2.3. Finally we note that in Figure 1 function f
underapproximates g in some points and overaproximates it in others. Also, it is clear that we can make the
approximation better by selecting the breakpoints closer. In Section 2.4 we will comment on these and other
issues regarding the approximation of complicated non-linear functions with piecewise linear functions.
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Figure 4: Examples of triangulations of subsets of 2.
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Figure 11: Piecewise linear functions of two variables.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (33)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.

P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (34)
aix < bi ∀i ∈ {p, . . . ,m}} (35)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (33)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (33) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (30) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}
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Figure 12: Decomposing a lower semicontinuous piecewise linear function.
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Figure 13: Decomposing a lower semicontinuous piecewise linear function.

to construct the model of epi(f) given by (x, z) ∈ epi(f) if and only if there exists z, zC , zJ ∈ , w ∈ 2,

y ∈ P and (λk)2k=0 ∈ 3
+ complying with (41), (42) and z ≥ zc + zJ .

This combination of models is referred to as model linkage in [24], which is shown to computationally

perform relatively poorly. One of the reasons for this poor performance is that model linkage does not

preserve sharpness and hence combining sharp models for epi(fC) and epi(fJ) does not necessarily yield

a sharp model for epi(f). Another reason is that there is usually poor coordination between the binary

variables of the linked models. For example, for the linked model (41)–(42) for f depicted in Figure 12(c)

variables wk and y[dk−1,dk] both refer to the kth segment of the function, but y[0,1] = 1 and w2 = 1 is a

feasible assignments of variables. This lack of coordination can get even worse when we consider the linear

programming relaxation of the model and, although it does not affect the validity of the model, it can

severely affect the solve time of the model when using a branch and bound algorithm. Fortunately, as noted

in [32], it is sometimes possible to improve model coordination by using ad-hoc techniques. We illustrate

this possible coordination by using two specific examples. In both cases we need a lower semicontinuous

function f : [0, u] → which is continuous and zero valued at zero such as the one in Figure 14(c).

In this case f is the sum of a continuous function

fC(x) :=

�
mkx + ck x ∈ [dk−1, dk] ∀k ∈ {1, . . . ,K}

and a lower semicontinuous step function

fJ(x) :=

�
bk x ∈ [dk−1, dk) ∀k ∈ {1, . . . ,K} (43)
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f : D ⊂ Rn → R is to model its epi-

graph given by epi(f) := {(x, z) ∈D×R : f(x)≤ z}. For example, the epigraph of the function in

Figure 1(a) is depicted in Figure 1(b).
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(a) f .
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(b) epi(f).

Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x)≤ 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x)≤ 0 can be modeled as (x, z) ∈ epi(f), z ≤ 0 and the minimization of

f can be achieved by minimizing z subject to (x, z)∈ epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Following the theory developed by Jeroslow and Lowe (Jeroslow 1987, 1989, Jeroslow and Lowe

1984, 1985, Lowe 1984), we say that a polyhedron P ⊂Rn×R×Rp×Rq is a binary mixed-integer

programming model for a set S ⊂Rn×R if

(x, z)∈ S⇔∃(λ, y)∈Rp× {0,1}q s.t. (x, z,λ, y)∈ P. (1)

Under the bounded domain assumption, Jeroslow and Lowe prove that the epigraph of a function

can be modeled as a binary mixed-integer programming model if and only if it is a union of

polyhedra with a common recession cone given by C+
n := {(0, z) ∈Rn×R : z ≥ 0}. This condition
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is a special case of the results in Jeroslow (1989), which also consider unbounded domains and

more general uses of f in a mathematical program. Furthermore, these conditions yield that for a

function f : D⊂R→R we have that epi(f) can be modeled as a binary mixed-integer programming

model if and only if f is piecewise linear and lower semicontinuous. Our definition of a piecewise

linear function is motivated by the extension of this characterization to the multivariate case.

A single variable continuous piecewise linear function f : [0, u]→R can be described as

f(x) :=

�
mix+ ci x∈ [di−1, di] ∀i∈ {1, . . . ,K} (2)

for some K ∈ Z+, {mi}K
i=1 ⊂R, {ci}K

i=1 ⊂R and {dk}K
k=0 ⊂R such that 0 = d0 < d1 < . . . < dK = u.

For example, function f depicted Figure 1(a) can be described in form (2) for K = 4, m1 = 22,

m2 = 8, m3 =−17.5, m4 = 10, c1 = 10, c2 = 24, c3 = 75, c4 =−35, d0 = 0, d1 = 1, d2 = 2, d3 = 4 and

d4 = 5. A natural extension to the multivariate case is given by

Definition 1. Piecewise Linear f : D⊂Rn →R:

f(x) :=

�
mP x+ cP x∈ P ∀P ∈P.

for finite family of polytopes P such that D =
�

P∈P P

Note that D does not need to be convex or connected and that the boundedness assumption is

for simplicity. Furthermore, if x ∈ P1 ∩P2 for two polytopes P1, P2 ∈ P the definition implies that

mP1x + cP1 = mP2x + cP2 which ensures the continuity of f on D. In addition, Definition ?? does

not specify how the polytopes are described as this is formulation dependent. In some formulations

the polytopes are given as the convex hull of a finite number of points and in others the polytopes

are given as a system of linear inequalities. The finite family of polytopes P is usually taken to

be a triangulation of D (Lee and Wilson 2001, Martin et al. 2006, Wilson 1998) and in fact some

models will require this. For any family of polytopes P we denote the set of vertices of the family

by V(P) :=
�

P∈P V (P ) where V (P ) is the set of vertices of P . When P is a triangulation this

coincides with the usual definition of vertices of a triangulation.
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f(x,y)

y

x

P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.

x

y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

f(x, y) :=






3 (x, y) ∈ (0, 1]2

2 (x, y) ∈ {(x, y) ∈ 2 : x = 0, y > 0}
2 (x, y) ∈ {(x, y) ∈ 2 : y = 0, x > 0}
0 (x, y) ∈ {(0, 0)}.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (32)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.
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A single variable continuous piecewise linear function f : [0, u]→R can be described as

f(x) :=
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mix+ ci x∈ [di−1, di] ∀i∈ {1, . . . ,K} (2)

for some K ∈ Z+, {mi}K
i=1 ⊂R, {ci}K

i=1 ⊂R and {dk}K
k=0 ⊂R such that 0 = d0 < d1 < . . . < dK = u.

For example, function f depicted Figure 1(a) can be described in form (2) for K = 4, m1 = 22,

m2 = 8, m3 =−17.5, m4 = 10, c1 = 10, c2 = 24, c3 = 75, c4 =−35, d0 = 0, d1 = 1, d2 = 2, d3 = 4 and

d4 = 5. A natural extension to the multivariate case is given by

Definition 1. Piecewise Linear f : D⊂Rn →R:

f(x) :=

�
mP x+ cP x∈ P ∀P ∈P.

for finite family of polytopes P such that D =
�

P∈P P

Note that D does not need to be convex or connected and that the boundedness assumption is

for simplicity. Furthermore, if x ∈ P1 ∩P2 for two polytopes P1,P2 ∈ P the definition implies that

mP1x + cP1 = mP2x + cP2 which ensures the continuity of f on D. In addition, Definition ?? does

not specify how the polytopes are described as this is formulation dependent. In some formulations

the polytopes are given as the convex hull of a finite number of points and in others the polytopes

are given as a system of linear inequalities. The finite family of polytopes P is usually taken to

be a triangulation of D (Lee and Wilson 2001, Martin et al. 2006, Wilson 1998) and in fact some

models will require this. For any family of polytopes P we denote the set of vertices of the family

by V(P) :=
�

P∈P V (P ) where V (P ) is the set of vertices of P . When P is a triangulation this

coincides with the usual definition of vertices of a triangulation.
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for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

f(x, y) :=






3 (x, y) ∈ (0, 1]2

2 (x, y) ∈ {(x, y) ∈ 2 : x = 0, y > 0}
2 (x, y) ∈ {(x, y) ∈ 2 : y = 0, x > 0}
0 (x, y) ∈ {(0, 0)}.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (32)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.
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for finite family of polytopes P such that D =
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P∈P P

Note that D does not need to be convex or connected and that the boundedness assumption is

for simplicity. Furthermore, if x ∈ P1 ∩P2 for two polytopes P1, P2 ∈ P the definition implies that

mP1x + cP1 = mP2x + cP2 which ensures the continuity of f on D. In addition, Definition ?? does

not specify how the polytopes are described as this is formulation dependent. In some formulations

the polytopes are given as the convex hull of a finite number of points and in others the polytopes

are given as a system of linear inequalities. The finite family of polytopes P is usually taken to

be a triangulation of D (Lee and Wilson 2001, Martin et al. 2006, Wilson 1998) and in fact some

models will require this. For any family of polytopes P we denote the set of vertices of the family

by V(P) :=
�

P∈P V (P ) where V (P ) is the set of vertices of P . When P is a triangulation this

coincides with the usual definition of vertices of a triangulation.
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Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
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discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
1 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0
1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2)
4− x x ∈ [2, 4]

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 3λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2]
5− x x ∈ [2, 4]

f(x) :=

�
x + 1 x ∈ [0, 2)
6− 3/2x x ∈ [2, 4]

x = 0λ0 + 2λ2 + 4λ4

z ≥ 1λ0 + 3λ2 + 0λ4

1 = λ0 + λ2 + λ4, λ0, λ2, λ4 ≥ 0
λ0 ≤ yP1 , λ2 ≤ yP1 + yP2 , λ4 ≤ yP2

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}
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variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
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discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}
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yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2]
5− x x ∈ [2, 4]

f(x) :=

�
x + 1 x ∈ [0, 2)
6− 3/2x x ∈ [2, 4]

x = 0λ0 + 2λ2 + 4λ4

z ≥ 1λ0 + 3λ2 + 0λ4

1 = λ0 + λ2 + λ4, λ0, λ2, λ4 ≥ 0
λ0 ≤ yP1 , λ2 ≤ yP1 + yP2 , λ4 ≤ yP2

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}
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22

6



/21

Formulacion Tradicional 1 variable

6

0

1

3

=

0 2 4

1

3

0 2

∪

0

3

2 4

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 8: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 9: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the

23

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 6: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 3λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2]
5− x x ∈ [2, 4]

f(x) :=

�
x + 1 x ∈ [0, 2)
6− 3/2x x ∈ [2, 4]

x = 0λ0 + 2λ2 + 4λ4

z ≥ 1λ0 + 3λ2 + 0λ4

1 = λ0 + λ2 + λ4, λ0, λ2, λ4 ≥ 0
λ0 ≤ yP1 , λ2 ≤ yP1 + yP2 , λ4 ≤ yP2

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

22

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 6: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
1 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0
1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2)
4− x x ∈ [2, 4]

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.

22

6
/21

Formulacion Tradicional 1 variable

6

0

1

3

=

0 2 4

1

3

0 2

∪

0

3

2 4

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 8: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 9: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the

23

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 6: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 3λP2,2 + 0λP2,4

yP1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
yP2 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2]
5− x x ∈ [2, 4]

f(x) :=

�
x + 1 x ∈ [0, 2)
6− 3/2x x ∈ [2, 4]

x = 0λ0 + 2λ2 + 4λ4

z ≥ 1λ0 + 3λ2 + 0λ4

1 = λ0 + λ2 + λ4, λ0, λ2, λ4 ≥ 0
λ0 ≤ yP1 , λ2 ≤ yP1 + yP2 , λ4 ≤ yP2

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

22

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 6: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

1 = λP1,0 + λP1,2, λP1,0, λP1,2 ≥ 0
1 = λP2,2 + λP2,4, λP2,2, λP2,4 ≥ 0
1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}

f(x) :=

�
x + 1 x ∈ [0, 2)
4− x x ∈ [2, 4]

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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stat Log MC DLog CC Inc DCC

min 0.4 1.2 1.6 5.9 2.8 8.1

avg 2.7 5.6 7.6 17.8 31.7 36.8
max 9.3 17.1 25.5 107.2 126.5 476.1

std 2.0 3.1 5.2 14.5 25.8 50.6

wins 93 7 0 0 0 0

fail 0 0 0 0 0 0

(a) 4× 4 grid.

stat Log DLog MC Inc CC DCC

min 1.7 17.8 30.9 99.5 102.9 237.0

avg 13.0 44.6 398.4 768.6 4412.2 6176.2
max 33.1 134.6 5328.3 6543.4 10000 10000

std 5.4 20.2 583.6 1110.5 3554.6 3385.9

wins 100 0 0 0 0 0

fail 0 0 0 0 13 31

(b) 8× 8 grid.

stat Log DLog Inc MC

min 27.4 125.1 772.2 2853.4

avg 56.2 325 4857 9266
max 118.3 1064.2 10000 10000

std 19.0 128.1 3428.5 1678.4

wins 100 0 0 0

fail 0 0 20 77

(c) 16× 16 grid.

Table 5: Solve times for two variable multi-commodity transportation problems. [s].

Again, both the models with a logarithmic number of variables (Log and DLog) were the best performers.

The logarithmic models probably provide an advantage because of the large number of triangles. In addition,

the smaller number of continuous variables is what probably allows Log to be the best performer overall.

6 Extension to Lower Semicontinuous Functions

In this section we study the extension of the formulations from Section 3 to discontinuous functions. We

again begin by illustrating some basic concepts with a single variable function. Consider the piecewise linear

discontinuous function f depicted in Figure 5, for which f−(d) = limx→d
x≤d

f(x) and f+
(d) = limx→d

x≥d
f(x).

0 2 4 5
f(4) = 0

f(0) = f+
(4) = 1

f−(2) = 4

f+
(2) = f(5) = 3

f(2) = 2

Figure 5: Approximating with a lower semicontinuous piecewise linear functions.

Function f is now only affine in [0, 2), {2}, (2, 4] and [4, 5]. However, because f is lower semicontinuous

we have that epi(f) is closed and, as illustrated in Figure 6, is in fact the union of polyhedra with common

recession cone C+
1 . Hence we should be able to model epi(f) as a binary mixed-integer programming problem.

In contrast, if f had not been lower semicontinuous epi(f) would not have been closed and we could not

have modeled it either. In the following subsections we will study these issues and techniques for modeling

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f : D ⊂ Rn → R is to model its epi-

graph given by epi(f) := {(x, z) ∈D×R : f(x)≤ z}. For example, the epigraph of the function in

Figure 1(a) is depicted in Figure 1(b).

0 1 2 4 5

f(4) = 5
0

f(0) = 10

f(1) = 32
f(2) = 40

f(5) = 15

(a) f .

0 1 2 4 5

5
0

10

32
40

15

(b) epi(f).

Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.

For simplicity, we assume that the function domain D is bounded and f is only used in a

constraint of the form f(x)≤ 0 or as an objective function that is being minimized. We then need

a model of epi(f) since f(x)≤ 0 can be modeled as (x, z) ∈ epi(f), z ≤ 0 and the minimization of

f can be achieved by minimizing z subject to (x, z)∈ epi(f). For continuous functions we can also

work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Following the theory developed by Jeroslow and Lowe (Jeroslow 1987, 1989, Jeroslow and Lowe

1984, 1985, Lowe 1984), we say that a polyhedron P ⊂Rn×R×Rp×Rq is a binary mixed-integer

programming model for a set S ⊂Rn×R if

(x, z)∈ S⇔∃(λ, y)∈Rp× {0,1}q s.t. (x, z,λ, y)∈ P. (1)

Under the bounded domain assumption, Jeroslow and Lowe prove that the epigraph of a function

can be modeled as a binary mixed-integer programming model if and only if it is a union of

polyhedra with a common recession cone given by C+
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2. Modeling Piecewise Linear Functions

An appropriate way of modeling a piecewise linear function f : D ⊂ Rn → R is to model its epi-

graph given by epi(f) := {(x, z) ∈D×R : f(x)≤ z}. For example, the epigraph of the function in
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Figure 1 A continuous piecewise linear function and its epigraph as the union of polyhedra.
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(x, z)∈ S⇔∃(λ, y)∈Rp× {0,1}q s.t. (x, z,λ, y)∈ P. (1)

Under the bounded domain assumption, Jeroslow and Lowe prove that the epigraph of a function
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x = 0λ0 + 2λ2 + 4λ4

z ≥ 1λ0 + 3λ2 + 0λ4

1 = λ0 + λ2 + λ4, λ0, λ2, λ4 ≥ 0
λ0 ≤ yP1 , λ2 ≤ yP1 + yP2 , λ4 ≤ yP2

1 = yP1 + yP2 , yP1 , yP2 ∈ {0, 1}
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have modeled it either. In the following subsections we will study these issues and techniques for modeling
discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.
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f(x) :=

�
x + 1 x ∈ [0, 2]
5− x x ∈ [2, 4]

f(x) :=

�
x + 1 x ∈ [0, 2)
6− 3/2x x ∈ [2, 4]
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work with its graph, but modeling the epigraph will allow us to extend most of the results to some

discontinuous functions and will simplify the analysis of formulation properties.

Following the theory developed by Jeroslow and Lowe (Jeroslow 1987, 1989, Jeroslow and Lowe

1984, 1985, Lowe 1984), we say that a polyhedron P ⊂Rn×R×Rp×Rq is a binary mixed-integer

programming model for a set S ⊂Rn×R if

(x, z)∈ S⇔∃(λ, y)∈Rp× {0,1}q s.t. (x, z,λ, y)∈ P. (1)
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have modeled it either. In the following subsections we will study these issues and techniques for modeling
discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.
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Figure 3: Graph and epigraph of a continuous piecewise linear function as unions of polyhedra.

2.2 Multivariate Piecewise Linear Functions

There are several possible ways of defining multivariate piecewise linear functions, many of which are equiva-

lent. Our definition in this section is motivated both by the way these functions usually appear in applications

and by the types of functions that can be modeled as mixed integer programming problems.

A single variable continuous piecewise linear function f : [0, u] → can be described as

f(x) :=

�
mix + ci x ∈ [di−1, di] ∀i ∈ {1, . . . ,K}

for some K ∈ +, {mi}K
i=1 ⊂ , {ci}K

i=1 ⊂ and {dk}K
k=0 ⊂ such that 0 = d0 < d1 < . . . < dK = u. For

example, the function given by the dashed line in figure 1 can be described as

f(x) :=






22x + 10 = (g(1)− g(0))x + g(0) x ∈ [0, 1]

8x + 24 = (g(2)− g(1))x + 2g(1)− g(2) x ∈ [1, 2]

−17.5x + 75 =
g(4)− g(2)

2
x + 2g(2)− g(4) x ∈ [2, 4]

10x− 3.5 = (g(5)− g(4))x + 5g(4)− 4g(5) x ∈ [4, 5].

(6)

This observation motivates the following definition for functions of more than one variable. The assump-

tion of bounded domain is again for simplicity.

Definition 1 (Continuous Piecewise Linear Function). Let D ⊂ n be a compact set. A continuous function
f : D ⊂ n → is a piecewise linear function if and only if there exists a finite family of polytopes P such
that

D =

�

P∈P
P (7)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (8)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

Note that for if x ∈ P1 ∩ P2 for two polytopes in P1, P2 ∈ P the definition implies that mP1x + cP1 =

mP2x + cP2 which ensures the continuity of f . Also, note that the domain D does not need to be convex

or connected and that the finite family of polytopes P is usually taken to be a triangulation of D (see for

example [28, 32, 48]). We will briefly discuss triangulations in Section 2.3.

5

= ∪ ∪ ∪

Figure 6: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

=

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.

Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
polytopes to be full dimensional. In contrast, the inclusion of non closed intervals such as [0, 1) requires the
use of sets other than polytopes. The simplest extension we can use is to consider compact sets that can be
described by a finite number of strict and non-strict linear inequalities. These sets are usually referred to as
copolytopes [25]. Using copolytopes instead of polytopes we get the following definition for not necessarily
continuous piecewise linear functions.

Definition 3 (Piecewise Linear Function). Let D ⊂ n be a compact set. A (not necessarily continuous)
function f : D ⊂ n → is a piecewise linear function if and only if there exists a finite family of copolytopes

22
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stat Log MC DLog CC Inc DCC

min 0.4 1.2 1.6 5.9 2.8 8.1

avg 2.7 5.6 7.6 17.8 31.7 36.8
max 9.3 17.1 25.5 107.2 126.5 476.1

std 2.0 3.1 5.2 14.5 25.8 50.6

wins 93 7 0 0 0 0

fail 0 0 0 0 0 0

(a) 4× 4 grid.

stat Log DLog MC Inc CC DCC

min 1.7 17.8 30.9 99.5 102.9 237.0

avg 13.0 44.6 398.4 768.6 4412.2 6176.2
max 33.1 134.6 5328.3 6543.4 10000 10000

std 5.4 20.2 583.6 1110.5 3554.6 3385.9

wins 100 0 0 0 0 0

fail 0 0 0 0 13 31

(b) 8× 8 grid.

stat Log DLog Inc MC

min 27.4 125.1 772.2 2853.4

avg 56.2 325 4857 9266
max 118.3 1064.2 10000 10000

std 19.0 128.1 3428.5 1678.4

wins 100 0 0 0

fail 0 0 20 77

(c) 16× 16 grid.

Table 5: Solve times for two variable multi-commodity transportation problems. [s].

Again, both the models with a logarithmic number of variables (Log and DLog) were the best performers.

The logarithmic models probably provide an advantage because of the large number of triangles. In addition,

the smaller number of continuous variables is what probably allows Log to be the best performer overall.

6 Extension to Lower Semicontinuous Functions

In this section we study the extension of the formulations from Section 3 to discontinuous functions. We

again begin by illustrating some basic concepts with a single variable function. Consider the piecewise linear

discontinuous function f depicted in Figure 5, for which f−(d) = limx→d
x≤d

f(x) and f+
(d) = limx→d

x≥d
f(x).

0 2 4 5
0

1

4

3

2

Figure 5: Approximating with a lower semicontinuous piecewise linear functions.

Function f is now only affine in [0, 2), {2}, (2, 4] and [4, 5]. However, because f is lower semicontinuous

we have that epi(f) is closed and, as illustrated in Figure 6, is in fact the union of polyhedra with common

recession cone C+
1 . Hence we should be able to model epi(f) as a binary mixed-integer programming problem.

In contrast, if f had not been lower semicontinuous epi(f) would not have been closed and we could not

have modeled it either. In the following subsections we will study these issues and techniques for modeling
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.

x

y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].
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stat Log MC DLog CC Inc DCC

min 0.4 1.2 1.6 5.9 2.8 8.1

avg 2.7 5.6 7.6 17.8 31.7 36.8
max 9.3 17.1 25.5 107.2 126.5 476.1

std 2.0 3.1 5.2 14.5 25.8 50.6
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(a) 4× 4 grid.

stat Log DLog MC Inc CC DCC

min 1.7 17.8 30.9 99.5 102.9 237.0

avg 13.0 44.6 398.4 768.6 4412.2 6176.2
max 33.1 134.6 5328.3 6543.4 10000 10000

std 5.4 20.2 583.6 1110.5 3554.6 3385.9
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fail 0 0 0 0 13 31

(b) 8× 8 grid.

stat Log DLog Inc MC

min 27.4 125.1 772.2 2853.4

avg 56.2 325 4857 9266
max 118.3 1064.2 10000 10000

std 19.0 128.1 3428.5 1678.4

wins 100 0 0 0

fail 0 0 20 77

(c) 16× 16 grid.

Table 5: Solve times for two variable multi-commodity transportation problems. [s].

Again, both the models with a logarithmic number of variables (Log and DLog) were the best performers.

The logarithmic models probably provide an advantage because of the large number of triangles. In addition,

the smaller number of continuous variables is what probably allows Log to be the best performer overall.

6 Extension to Lower Semicontinuous Functions

In this section we study the extension of the formulations from Section 3 to discontinuous functions. We

again begin by illustrating some basic concepts with a single variable function. Consider the piecewise linear

discontinuous function f depicted in Figure 5, for which f−(d) = limx→d
x≤d

f(x) and f+
(d) = limx→d

x≥d
f(x).
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Function f is now only affine in [0, 2), {2}, (2, 4] and [4, 5]. However, because f is lower semicontinuous

we have that epi(f) is closed and, as illustrated in Figure 6, is in fact the union of polyhedra with common

recession cone C+
1 . Hence we should be able to model epi(f) as a binary mixed-integer programming problem.

In contrast, if f had not been lower semicontinuous epi(f) would not have been closed and we could not

have modeled it either. In the following subsections we will study these issues and techniques for modeling
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and
f(x) :=
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mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].
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stat Log MC DLog CC Inc DCC

min 0.4 1.2 1.6 5.9 2.8 8.1

avg 2.7 5.6 7.6 17.8 31.7 36.8
max 9.3 17.1 25.5 107.2 126.5 476.1

std 2.0 3.1 5.2 14.5 25.8 50.6

wins 93 7 0 0 0 0

fail 0 0 0 0 0 0

(a) 4× 4 grid.

stat Log DLog MC Inc CC DCC

min 1.7 17.8 30.9 99.5 102.9 237.0

avg 13.0 44.6 398.4 768.6 4412.2 6176.2
max 33.1 134.6 5328.3 6543.4 10000 10000

std 5.4 20.2 583.6 1110.5 3554.6 3385.9

wins 100 0 0 0 0 0

fail 0 0 0 0 13 31

(b) 8× 8 grid.

stat Log DLog Inc MC

min 27.4 125.1 772.2 2853.4

avg 56.2 325 4857 9266
max 118.3 1064.2 10000 10000

std 19.0 128.1 3428.5 1678.4

wins 100 0 0 0

fail 0 0 20 77

(c) 16× 16 grid.

Table 5: Solve times for two variable multi-commodity transportation problems. [s].

Again, both the models with a logarithmic number of variables (Log and DLog) were the best performers.

The logarithmic models probably provide an advantage because of the large number of triangles. In addition,

the smaller number of continuous variables is what probably allows Log to be the best performer overall.

6 Extension to Lower Semicontinuous Functions

In this section we study the extension of the formulations from Section 3 to discontinuous functions. We

again begin by illustrating some basic concepts with a single variable function. Consider the piecewise linear

discontinuous function f depicted in Figure 5, for which f−(d) = limx→d
x≤d

f(x) and f+
(d) = limx→d

x≥d
f(x).

0 2 4 5
0

1

4

3

2

Figure 5: Approximating with a lower semicontinuous piecewise linear functions.

Function f is now only affine in [0, 2), {2}, (2, 4] and [4, 5]. However, because f is lower semicontinuous

we have that epi(f) is closed and, as illustrated in Figure 6, is in fact the union of polyhedra with common

recession cone C+
1 . Hence we should be able to model epi(f) as a binary mixed-integer programming problem.

In contrast, if f had not been lower semicontinuous epi(f) would not have been closed and we could not

have modeled it either. In the following subsections we will study these issues and techniques for modeling
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.

x

y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.

x

y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.

x

y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

f(x, y) :=






3 (x, y) ∈ (0, 1]2

2 (x, y) ∈ {(x, y) ∈ 2 : x = 0, y > 0}
2 (x, y) ∈ {(x, y) ∈ 2 : y = 0, x > 0}
0 (x, y) ∈ {(0, 0)}.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (32)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.
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Figure 11: Piecewise linear functions of two variables.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (33)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.

P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (34)
aix < bi ∀i ∈ {p, . . . ,m}} (35)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (33)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (33) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (30) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

f(x, y) :=






3 (x, y) ∈ (0, 1]2

2 (x, y) ∈ {(x, y) ∈ 2 : x = 0, y > 0}
2 (x, y) ∈ {(x, y) ∈ 2 : y = 0, x > 0}
0 (x, y) ∈ {(0, 0)}.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (32)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.
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Figure 11: Piecewise linear functions of two variables.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (33)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.

P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (34)
aix < bi ∀i ∈ {p, . . . ,m}} (35)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (33)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (33) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (30) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}
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P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].

24

Finite family of 
copolytopes

P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

f(x, y) :=






3 (x, y) ∈ (0, 1]2

2 (x, y) ∈ {(x, y) ∈ 2 : x = 0, y > 0}
2 (x, y) ∈ {(x, y) ∈ 2 : y = 0, x > 0}
0 (x, y) ∈ {(0, 0)}.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (32)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.
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Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (33)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.

P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (34)
aix < bi ∀i ∈ {p, . . . ,m}} (35)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (33)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (33) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (30) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}
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P such that
D =
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P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.
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Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

h(x, y) :=






3 (x, y) ∈ P1

2 (x, y) ∈ P2

2 (x, y) ∈ P3

0 (x, y) ∈ P4.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) =
�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P ) + C+

n

�
, (32)

where V (P ) denotes the set of extreme points of the closure P or P . We note that the closure of a
copolytope P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using characterization (8) we can extend to the lower semicontinuous case any
formulation from Section 3 that directly models epi(f) without further continuity assumptions.
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P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (33)
aix < bi ∀i ∈ {p, . . . ,m}} (34)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (32)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (32) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (28) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

Similarly, the extension of DLog is obtained by replacing V (P ) by V (P ) in (10).

Example 2 (Continued): For the function defined in (28) and for B defined as B([0, 2)) = (0, 0)T , B([2, 2]) =
(0, 1)T , B((2, 4]) = (1, 1)T , B([4, 5]) = (1, 0)T DLog is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ(2,4],2 + λ(2,4],4 + λ[4,5],4 + λ[4,5],5 ≤ y1, λ[0,2),0 + λ[0,2),2 + λ[2,2],2 ≤ (1− y1)

λ[2,2],2 + λ(2,4],2 + λ(2,4],4 ≤ y2, λ[0,2),0 + λ[0,2),2 + λ[4,5],4 + λ[4,5],5 ≤ (1− y2)
y1, y2 ∈ {0, 1}.

The extension of MC is obtained from (21) by replacing (21d) by

AP λP ≤ yP bP ∀P ∈ P (35)

where AP λP ≤ bP is the set of linear inequalities describing polytope P . For functions of one variable this
extension has been noted in [11].
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Finite family of 
copolytopes

P such that
D =

�

P∈P
P (29)

and
f(x) :=

�
mP x + cP x ∈ P ∀P ∈ P (30)

for some {mP }P∈P ⊆ n and {cP }P∈P ⊆ .

We illustrate this definition using the functions of two variables from Figure 8.

x

y

(a) Graph of h

x

y

(b) Graph of w

Figure 8: Piecewise linear functions of two variables.

Function h from Figure 8(a) is from [32] and its domain is [0, 1]2. By using copolytopes P1 = (0, 1]2,
P2 = {(x, y) ∈ 2 : x = 0, y > 0}, P3 = {(x, y) ∈ 2 : y = 0, x > 0} and P4 = {(0, 0)} we can describe h
as

f(x, y) :=






3 (x, y) ∈ (0, 1]2

2 (x, y) ∈ {(x, y) ∈ 2 : x = 0, y > 0}
2 (x, y) ∈ {(x, y) ∈ 2 : y = 0, x > 0}
0 (x, y) ∈ {(0, 0)}.

(31)

Function w from Figure 8(b) is slightly more complicated and its domain is D̃ = conv({(1, 0), (1, 1), (0, 1)}).
By using copolytopes P̃1 = {(x, y) ∈ D̃ : y < 1}, P̃2 = {(x, y) ∈ 2 : y = 1, x ∈ [0, 1)} and P̃3 = {(1, 1)} we
can describe w as

w(x, y) :=






3 (x, y) ∈ P̃1

1− x (x, y) ∈ P̃2

1 (x, y) ∈ P̃3.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (32)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.
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Figure 11: Piecewise linear functions of two variables.

Finally, note that a piecewise linear function as defined in Definition 3 is not necessarily lower semi-
continuous. Lower semicontinuity of a piecewise linear function is crucial for obtaining a mixed integer
programming model. For a lower semicontinuous piecewise linear function we have a direct extension of
characterization (8) to

epi(g) = C+
n +

�

P∈P
conv

�
{(v, mP v + cP )}v∈V (P )

�
, (33)

where V (P ) = vertices of closure P of P . We note that the closure of a copolytope P = {x ∈ n :
aix ≤ bi ∀i ∈ {1, . . . , p}, aix < bi ∀i ∈ {p, . . . ,m}} is P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . ,m}}. Using
characterization (8) we can extend to the lower semicontinuous case any formulation from Section 3 that
directly models epi(f) without further continuity assumptions.

P = {x ∈ n : aix ≤ bi ∀i ∈ {1, . . . , p}, (34)
aix < bi ∀i ∈ {p, . . . ,m}} (35)

6.2 Formulations for Lower Semi-Continuous Piecewiselinear Functions

Formulations DCC, DLog and MC directly model epi(f) so their extension to the lower semicontinuous case
can be achieved by simply replacing characterization (8) of epi(f) for continuous f by characterization (33)
of epi(f) for lower semicontinuous f .

By noting that V (P ) in (8) is replaced by V (P ) in (33) we have that the extension of DCC to the
lower semicontinuous case is obtained by replacing V (P ) by V (P ) in (9). For functions of one variable this
extension has been noted in [11, 41].

Example 2 (Continued): For the function defined in (30) DCC is given by

0λ[0,2),0 + 2
�
λ[0,2),2 + λ[2,2],2 + λ(2,4],2

�
+ 4

�
λ(2,4],4 + λ[4,5],4

�
+ 5λ[4,5],5 = x

1λ[0,2),0 + 4λ[0,2),2 + 2λ[2,2],2 + 3λ(2,4],2 + 0λ(2,4],4 + 1λ[4,5],4 + 3λ[4,5],5 ≤ z

λ[0,2),0, λ[0,2),2, λ[2,2],2, λ(2,4],2, λ(2,4],4, λ[4,5],4, λ[4,5],5 ≥ 0
λ[0,2),0 + λ[0,2),2 = y[0,2), λ[2,2],2 = y[2,2]

λ(2,4],2 + λ(2,4],4 = y(2,4], λ[4,5],4 + λ[4,5],5 = y[4,5]

y[0,2) + y[2,2] + y(2,4] + y[4,5] = 1
y[0,2), y[2,2], y(2,4], y[4,5] ∈ {0, 1}

25

11



/21

Discontinuous Case

Modelo para FLT semi-continuas

12

0

1

3

2 =

0 2 4

1

3

0 2

∪

0

2

2 4

Figure 6: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.

x = 0λP1,0 + 2λP1,2 + 2λP2,2 + 4λP2,4

z ≥ 1λP1,0 + 3λP1,2 + 2λP2,2 + 0λP2,4

1 = λP1,0 + 2λP1,2, λP1,0, λP1,2 ≥ 0
1 = λP2,2 + 2λP2,4, λP2,2, λP2,4 ≥ 0

f(x) :=

�
x + 1 x ∈ [0, 2)
4− x x ∈ [2, 4]

=

Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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discontinuous functions of one or more variables. We begin by extending Definition 1 and characterization (8)
to the discontinuous case.
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6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.

Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
polytopes to be full dimensional. In contrast, the inclusion of non closed intervals such as [0, 1) requires the
use of sets other than polytopes. The simplest extension we can use is to consider compact sets that can be
described by a finite number of strict and non-strict linear inequalities. These sets are usually referred to as
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The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.

Example 2: The function given in Figure 5 can be described as:

f(x) :=



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1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
polytopes to be full dimensional. In contrast, the inclusion of non closed intervals such as [0, 1) requires the
use of sets other than polytopes. The simplest extension we can use is to consider compact sets that can be
described by a finite number of strict and non-strict linear inequalities. These sets are usually referred to as
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6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.

Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
polytopes to be full dimensional. In contrast, the inclusion of non closed intervals such as [0, 1) requires the
use of sets other than polytopes. The simplest extension we can use is to consider compact sets that can be
described by a finite number of strict and non-strict linear inequalities. These sets are usually referred to as
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The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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6.1 Multivariate Discontinuous Piecewise Linear Functions

The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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The example from Figure 5 shows that to consider discontinuous functions piecewise linear functions of one
variable we need to use other intervals besides the ones of the form [di−1, di] for di−1 < di.
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The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
polytopes to be full dimensional. In contrast, the inclusion of non closed intervals such as [0, 1) requires the
use of sets other than polytopes. The simplest extension we can use is to consider compact sets that can be
described by a finite number of strict and non-strict linear inequalities. These sets are usually referred to as
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

B : {0, . . . ,m− 1}→ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given by

�

P∈P

�

v∈V (P )

λP,vv = x,
�

P∈P

�

v∈V (P )

λP,v (mP v + cP )≤ z

λP,v ≥ 0 ∀P ∈P, v ∈ V (P ),
�

P∈P

�

v∈V (P )

λP,v = 1

�

P∈P+(B,l)

�

v∈V (P )

λP,v ≤ yl,
�

P∈P0(B,l)

�

v∈V (P )

λP,v ≤ (1− yl), yl ∈ {0,1} ∀l ∈L(P)

where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by aggregating

variables associated with a point in V(P) that belongs to more than one polytope in P. The
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�

P∈P

�

v∈V (P )
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P∈P+(B,l)

�
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�
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λP,v ≤ (1− yl), yl ∈ {0,1} ∀l ∈L(P)

where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by aggregating

variables associated with a point in V(P) that belongs to more than one polytope in P. The
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

B : {0, . . . ,m− 1}→ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.
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Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).
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P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by aggregating

variables associated with a point in V(P) that belongs to more than one polytope in P. The
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where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

B : {0, . . . ,m− 1}→ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given by
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where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

B : {0, . . . ,m− 1}→ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given by
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P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.
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{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).
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where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

B : {0, . . . ,m− 1}→ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given by
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where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by aggregating

variables associated with a point in V(P) that belongs to more than one polytope in P. The
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This formulation has no requirement on the family of polytopes and is given by

w ∈ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given by
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where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by aggregating

variables associated with a point in V(P) that belongs to more than one polytope in P. The
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

B : {0, . . . ,m− 1}→ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
�

v∈V (P ) λP,v = 1

when y = B(P).

The resulting formulation has no requirement on the family of polytopes and is given by
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where B :P→ {0,1}�log2 |P|� is any injective function, L(P) := {1, . . . , �log2 |P|�},

P+(B, l) := {P ∈P : B(P )l = 1} and P0(B, l) := {P ∈P : B(P )l = 0}.

We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.

3.2. Convex combination models

The formulations in this section reduce the number of continuous variables of DCC by aggregating

variables associated with a point in V(P) that belongs to more than one polytope in P. The
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3.1.1. Basic Model

This formulation has no requirement on the family of polytopes and is given by

w ∈ {0,1}�log2 m� (4)

This formulation has been studied in Croxton et al. (2003a), Jeroslow (1987), Jeroslow and Lowe

(1984), Lowe (1984), Meyer (1976) and Sherali (2001) and is sometimes referred to as the convex

combination model. To distinguish it from the formulation in Section 3.2 we instead refer to it as

the disaggregated convex combination model and denote it by DCC.

3.1.2. Logarithmic Model

Using ideas from Ibaraki (1976), Vielma and Nemhauser (2008a) and Vielma and Nemhauser

(2008b) we can reduce the number of binary variables and constraints of DCC. To do this we identify

each polytope in P with a binary vector in {0,1}�log2 |P|� through an injective function B : P →

{0,1}�log2 |P|�. We then use �log2 |P|� binary variables y ∈ {0,1}�log2 |P|� to force
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�

P∈P

�

v∈V (P )

λP,vv = x,
�

P∈P

�

v∈V (P )

λP,v (mP v + cP )≤ z

λP,v ≥ 0 ∀P ∈P, v ∈ V (P ),
�

P∈P

�

v∈V (P )

λP,v = 1

�

P∈P+(B,l)

�

v∈V (P )

λP,v ≤ yl,
�

P∈P0(B,l)

�

v∈V (P )

λP,v ≤ (1− yl), yl ∈ {0,1} ∀l ∈L(P)
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B(i) and B(i+1) (4)
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We refer to it as the logarithmic dissagregated convex combination model and denote it by DLog.
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(a) J1 triangulation of [0,2]2.
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(b) 1/2 scaled J1 triangulation of [0,2]2.

Figure 2 Examples of triangulations of subsets of R2.

and Vielma and Nemhauser (2008b) for the case when the family of polytopes P is topologically

equivalent or compatible (Aichholzer et al. 2003) with a triangulation known as J1 or “Union Jack”

(Todd 1977). For simplicity we first describe the formulation for the case when P = J1 and then

show how to extend the formulation to the case where P is compatible with J1.

J1 is defined for D = [0,K]n for K ∈ Z even. The vertex set of J1 is given by V = {0, . . . ,K}n.

The simplices of J1 are constructed as follows. Let N = {1, . . . , n}, V0 = {v ∈ V : vi is odd, ∀i∈N},

Sym(N) be the group of all permutations on N and ei be the i-th unit vector of Rn. For each

(v0,π, s) ∈ V0 × Sym(N)× {−1,1}n define j1(v0,π, s) to be the simplex whose vertices are {yi}n
i=0

where y0 = v0 and yi = yi−1 + sπ(i)e
π(i) for each i ∈N . Triangulation J1 of D is given by all these

simplices, which is illustrated in Figure 2(a) for D = [0,2]2. A branching scheme for J1 is constructed

by dividing index set S into two sets S1 and S2. The first set is given by S1 := N×{1, . . . , �log2(K)�}

and L(s1,s2) := {v ∈ V : vs1 ∈ O(s2,1)}, R(s1,s2) := {v ∈ V : vs1 ∈ O(s2,0)} for each (s1, s2) ∈ S1,

where O(l, b) :=
�
k ∈ {0, . . . ,K} : (k = 0 or Gk

l = b) and
�
k = K or G

k+1
l = b

��
for an arbitrary but

fixed set of binary vectors (Gl)K
l=1 ⊂ {0,1}�log2(K)� such that Gl and Gl+1 differ in at most one

component for each l ∈ {1, . . . , �log2(K)� − 1}. There are many different set of vectors with this

property and they are usually referred to as reflective binary or Gray codes (Wilf. 1989). The second

set is given by S2 := {(s1, s2) ∈ N 2 : s1 < s2} and L(s1,s2) := {v ∈ V : vs1 is even and vs2 is odd},

R(s1,s2) := {v ∈ V : vs1 is odd and vs2 is even} for each (s1, s2)∈ S2.

Following Vielma and Nemhauser (2008a) and Vielma and Nemhauser (2008b) we refer to the
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Application: Piecewiselinear Functions

Single variable: SOS2 on λ ∈ ∆J for J = {0, . . . ,K}.
Extension for f(x, y) : [0, K]2 → R (Lee and Wilson 01,

Martin et. al 06)

y

x0 1 2 3 4
0

1

2

3

4

T

K = 4

λ ∈ ∆J

λ ∈
�

i∈I

Q(Si)

J = {0, . . . ,K}2 = {vertices}.
I = {triangles},
Si = {vertices of triangle i}
(ST = {(0, 0), (1, 0), (1, 1)}).
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Ramificacion Independiente para FLT

Seleccionar triángulo prohibiendo vértices.
2 etapas: 

Seleccionar cuadrado con SOS2 por variable.
Seleccionar 1 triángulo de cada cuadtado. 
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Triangle Selecting Independent Branching: Select one of
the two triangles in each square

0 1 2 3 4
0

1

2

3

4

Forbid white triangles in one
branch and grey triangles in the
other.

L̄ = {(r, s) ∈ J : r even and s odd}
= {square vertices}

R̄ = {(r, s) ∈ J : r odd and s even}
= {diamond vertices}

Depth of independent branching is
�log2 T � for
T = total # of triangles.
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