Modelamiento Avanzado con Programación
Entera Mixta
Parte 3/3
Juan Pablo Vielma
University of Pittsburgh
Universidad de Antofagasta, 2011 - Antofagasta, Chile

Costos Fijos y Descuentos

1.Costos Fijos.
2.Descuentos (e.g. Remates).
3. Descuentos en costos Fijos

Funciones Lineales por Trazos (FLT)

Aproximación

Economías de escala
\square
Modelar Funciones = Epigrafo

Ejemplo:

Funciones Lineales por Trazos

Definition 1. Piecewise Linear $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.
$$

for finite family of polytopes \mathcal{P} such that $D=\bigcup_{P \in \mathcal{P}} P$

Funciones Lineales por Trazos

Definition 1. Piecewise Linear $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.
$$

for finite family of polytopes \mathcal{P} such that $D=\bigcup_{P \in \mathcal{P}} P$

Funciones Lineales por Trazos

Definition 1. Piecewise Linear $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$:

$$
f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right.
$$

for finite family of polytopes \mathcal{P} such that $D=\bigcup_{P \in \mathcal{P}} P$

Formulacion Tradicional 1 variable

$$
\begin{array}{r}
f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
V(P)=\text { vertices of } \mathrm{P} . \\
\mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{array}
$$

Formulacion Tradicional 1 variable

$$
\begin{aligned}
f(x):= & \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& V(P)=\text { vertices of } P .
\end{aligned}
$$

Formulacion Tradicional 1 variable

$$
\begin{array}{rll}
\boxed{0} & f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& V(P)=\text { vertices of } \mathrm{P} .
\end{array}
$$

$\begin{array}{ll}\text { idea: write }(x, y) \in \operatorname{epi}(f) & x=0 \lambda_{0}+2 \AA_{2}+4 \lambda_{4} \\ \text { as convex combination of } & z \geq 12 \lambda_{0}+3 \Lambda_{2}+0 A_{4}\end{array}$
$(v, f(v))$ for $v \in \mathcal{V}(\mathcal{P}) . \quad 1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0$

Formulacion Tradicional 1 variable

$$
\begin{array}{r}
f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
V(P)=\text { vertices of } \mathrm{P} . \\
\mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{array}
$$

idea: write $(x, y) \in \operatorname{epi}(f)$
as convex combination of
$(v, f(v))$ for $v \in \mathcal{V}(\mathcal{P})$.

Formulacion Tradicional 1 variable

$$
\begin{array}{r}
f(x):= \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
V(P)=\text { vertices of } \mathrm{P} . \\
\mathcal{V}(\mathcal{P}):=V\left(P_{1}\right) \cup V\left(P_{2}\right)=\{0,2,4\} .
\end{array}
$$

λ_{0} and λ_{4} cannot be nonzero at the same

$$
\begin{aligned}
& x=0 \lambda_{0}+2 \lambda_{2}+1 \lambda_{4} \\
& z \geq 1 \lambda_{0}+3 \lambda_{2}+0 A_{4}
\end{aligned}
$$

time.

$$
1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0
$$

Formulacion Tradicional 1 variable

$$
\begin{aligned}
f(x):= & \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& V(P)=\text { vertices of } P .
\end{aligned}
$$

λ_{0} and λ_{4} cannot be nonzero at the same

$$
\begin{aligned}
& x=0 A_{0}+2 \lambda_{2}+\left[\lambda_{4}\right. \\
& z \geq 1 \lambda_{0}+3 \lambda_{2}+0 A_{4}
\end{aligned}
$$

time.

$$
1=\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0
$$

$$
\lambda_{0} \leq y_{P_{1}}, \quad \lambda_{2} \leq y_{P_{1}}+y_{P_{2}}, \quad \lambda_{4} \leq y_{P_{2}}
$$

$$
1=y_{P_{1}}+y_{P_{2}}, \quad y_{P_{1}}, y_{P_{2}} \in\{0,1\}
$$

Formulacion Tradicional 2 variables

$$
\begin{gathered}
f(x, y):= \begin{cases}x & (x, y) \in P_{1} \\
y & (x, y) \in P_{1}\end{cases} \\
P_{1}:=\{(x, y): x \leq 1,0 \leq y \leq x\}, \quad P_{2}:=\ldots \\
\mathcal{V}(\mathcal{P}):=\{(0,0),(1,0),(0,1),(1,1)\} .
\end{gathered}
$$

Formulacion Tradicional 1 variable

$$
\begin{aligned}
f(x):= & \begin{cases}x+1 & x \in[0,2] \leftarrow P_{1} \\
6-3 / 2 x & x \in[2,4] \leftarrow P_{2}\end{cases} \\
& V(P)=\text { vertices of } \mathrm{P} .
\end{aligned}
$$

$$
\begin{aligned}
x & =0 \lambda_{0}+2 \lambda_{2}+4 \lambda_{4} \\
z & \geq 1 \lambda_{0}+3 \lambda_{2}+0 \lambda_{4} \\
1 & =\lambda_{0}+\lambda_{2}+\lambda_{4}, \quad \lambda_{0}, \lambda_{2}, \lambda_{4} \geq 0 \\
\lambda_{0} & \leq y_{P_{1}}, \quad \lambda_{2} \leq y_{P_{1}}+y_{P_{2}}, \quad \lambda_{4} \leq y_{P_{2}} \\
1 & =y_{P_{1}}+y_{P_{2}}, \quad y_{P_{1}}, y_{P_{2}} \in\{0,1\}
\end{aligned}
$$

Formulacion Tradicional 2 variables

$f(x, y):= \begin{cases}x & (x, y) \in P_{1} \\ y & (x, y) \in P_{1}\end{cases}$
$P_{1}:=\{(x, y): x \leq 1,0 \leq y \leq x\}, \quad P_{2}:=\ldots$
$\mathcal{V}(\mathcal{P}):=\{(0,0),(1,0),(0,1),(1,1)\}$.

Formulacion Tradicional 2 variables

$$
\begin{gathered}
f(x, y):= \begin{cases}x & (x, y) \in P_{1} \\
y & (x, y) \in P_{1}\end{cases} \\
P_{1}:=\{(x, y): x \leq 1,0 \leq y \leq x\}, \quad P_{2}:=\ldots \\
\mathcal{V}(\mathcal{P}):=(0,0)(1,0),(0,1),(1,1)\} .
\end{gathered}
$$

$$
\begin{aligned}
& x=0 \hat{\lambda}_{(0,0)}+1 \lambda_{(1,0)}+0 \lambda_{(0,1)}+1 \lambda_{(1,1)} \\
& y=0 \lambda_{(0,0)}+0 \lambda_{(1,0)}+1 \lambda_{(0,1)}+1 \lambda_{(1,1)} \\
& z \geq \mathcal{C l}_{(0,0)}+1 \lambda_{(1,0)}+1 \lambda_{(0,1)}+1 \lambda_{(1,1)} \\
& 1=\lambda_{(0,0)}+\lambda_{(1,0)}+\lambda_{(0,1)}+\lambda_{(1,1)}, \quad \lambda_{(0,0)}, \ldots, \lambda_{(1,1)} \geq 0 \\
& \text {.. } y_{P_{1}}+y_{P_{1}}=1, \quad y_{P_{1}}, y_{P_{1}} \in\{0,1\}
\end{aligned}
$$

Formulacion Tradicional 2 variables

$$
\begin{gathered}
f(x, y):= \begin{cases}x & (x, y) \in P_{1} \\
y & (x, y) \in P_{1}\end{cases} \\
P_{1}:=\{(x, y): x \leq 1,0 \leq y \leq x\}, \quad P_{2}:=\ldots \\
\mathcal{V}(\mathcal{P}):=\{(0,0),(1,0),(0,1),(1,1)\} .
\end{gathered}
$$

[^0]
Formulacion Tradicional 2 variables

$f(x, y):= \begin{cases}x & (x, y) \in P_{1} \\ y & (x, y) \in P_{1}\end{cases}$
$P_{1}:=\{(x, y): x \leq 1,0 \leq y \leq x\}, \quad P_{2}:=\ldots$
$\mathcal{V}(\mathcal{P}):=\{(0,0),(1,0),(0,1),(1,1)\}$.

$$
\begin{aligned}
& x=0 \lambda_{(0,0)}+1 \lambda_{(1,0)}+0 \lambda_{(0,1)}+1 \lambda_{(1,1)} \\
& y=0 \lambda_{(0,0)}+0 \lambda_{(1,0)}+1 \lambda_{(0,1)}+1 \lambda_{(1,1)} \\
& z \geq 0 \lambda_{(0,0)}+1 \lambda_{(1,0)}+1 \lambda_{(0,1)}+1 \lambda_{(1,1)} \\
& 1=\lambda_{(0,0)}+\lambda_{(1,0)}+\lambda_{(0,1)}+\lambda_{(1,1)}, \quad \lambda_{(0,0)}, \ldots, \lambda_{(1,1)} \geq 0 \\
& \lambda_{(0,0)} \leq y_{P_{1}}+y_{P_{1}} \ldots \quad y_{P_{1}}+y_{P_{1}}=1, \quad y_{P_{1}}, y_{P_{1}} \in\{0,1\}
\end{aligned}
$$

Semi-continuidad Inferior

Semi-continuidad Inferior
- Semi-continuidad Inferior:

Semi-continua = epigrafo cerrado

Semi-continua $=$ epigrafo cerrado

Semi-continua = epigrafo cerrado

Funciones LT semi-continuas

$$
\begin{array}{cll}
f(x):=\left\{\begin{array}{lll}
m_{P} x+c_{P} & x \in P & \forall P \in \mathcal{P} \\
P=\left\{\begin{array}{l}
\text { Finite family of } \\
\text { copolytopes }
\end{array}\right. \\
P \in \mathbb{R}^{n}: a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\}, & \\
\left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{array}\right.
\end{array}
$$

Funciones LT semi-continuas

Funciones LT semi-continuas

$$
\begin{gathered}
f(x):=\left\{m_{P} x+c_{P} \quad x \in P \quad \forall P \in \mathcal{P}\right. \\
P=\left\{x \in \mathbb{R}^{n}: a_{i} x \leq b_{i} \forall i \in\{1, \ldots, p\},\right. \\
\left.a_{i} x<b_{i} \forall i \in\{p, \ldots, m\}\right\}
\end{gathered}
$$

$$
f(x):= \begin{cases}1.5 x+1 & x \in[0,2) \\ 2 & x \in[2,2] \\ -1.5 x+6 & \underset{x \in(2,4]}{x \in(4,5]}\end{cases}
$$

Funciones LT semi-continuas

Funciones LT semi-continuas

Funciones LT semi-continuas

Discontinuous Case	$O \bigcirc O \bigcirc$
Modelo para FLT semi-continuas	
(DCC)	
$f(x):= \begin{cases}x+1 & x \in[0,2) \\ 4-x & x \in[2,4]\end{cases}$	

\section*{| Discontinuous Case | 0000 |
| :--- | :--- |}

Modelo para FLT semi-continuas

Modelo para FLT semi-continuas

Discontinuous Case
 10000

Modelo para FLT semi-continuas

Discontinuous Case	0000
Modelo para FLT semi-continuas	
	$U={ }_{0}$
(DCC) $f(x):= \begin{cases}x+1 & x \in[0,2) \\ 4-x & x \in[2,4]\end{cases}$	$\begin{aligned} & x=0 \lambda_{P_{1}, 0}+2 \lambda_{P_{1}, 2}+2 \lambda_{P_{2}, 2}+4 \lambda_{P_{2}, 4} \\ & z \geq 1 \lambda_{P_{1}, 0}+3 \lambda_{P_{1}, 2}+2 \lambda_{P_{2}, 2}+0 \lambda_{P_{2}, 4} \\ & 1=\lambda_{P_{1}, 0}+\lambda_{P_{1}, 2}, \quad \lambda_{P_{1}, 0}, \lambda_{P_{1}, 2} \geq 0 \\ & 1=\lambda_{P_{2}, 2}+\lambda_{P_{2}, 4}, \quad \lambda_{P_{2}, 2}, \lambda_{P_{2}, 4} \geq 0 \end{aligned}$

Intermedio

Modelo para FLT semi-continuas

Formulación Tradicional de FLT

Formulación Tradicional de FLT

Disjunciones Especiales

$$
\begin{aligned}
& x=0 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+4 \lambda_{4} \\
& z \geq 10 \lambda_{1}+32 \lambda_{2}+40 \lambda_{3}+5 \lambda_{4} \\
& \lambda \in[0,1]^{4}: \sum_{i=1}^{4} \lambda_{i}=1 \\
& \lambda_{1} \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2}+y_{3}, \\
& \lambda_{4} \leq y_{3}, \quad \sum_{i=1}^{3} y_{i}=1, \quad y \in\{0,1\}^{3}
\end{aligned}
$$

Disjunciones Especiales

$$
\begin{aligned}
& x=0 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+4 \lambda_{4} \\
& z \geq 10 \lambda_{1}+32 \lambda_{2}+40 \lambda_{3}+5 \lambda_{4} \\
& \lambda \in[0,1]^{4}: \sum_{i=1}^{4} \lambda_{i}=1 \\
& \lambda_{1} \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2}+y_{3}, \\
& \lambda_{4} \leq y_{3}, \quad \sum_{i=1}^{3} y_{i}=1, \quad y \in\{0,1\}^{3}
\end{aligned}
$$

Disjunciones Especiales

$$
\begin{aligned}
& x=0 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+4 \lambda_{4} \\
& z \geq 10 \lambda_{1}+32 \lambda_{2}+40 \lambda_{3}+5 \lambda_{4} \\
& \left\{\lambda \in[0,1]^{4}: \sum_{i=1}^{4} \lambda_{i}=1\right\}=: \Delta^{4} \\
& \lambda_{1} \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2}+y_{3}, \\
& \lambda_{4} \leq y_{3}, \quad \sum_{i=1}^{3} y_{i}=1, \quad y \in\{0,1\}^{3}
\end{aligned}
$$

Disjunciones Especiales

$$
\begin{aligned}
& x=0 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+4 \lambda_{4} \\
& z \geq 10 \lambda_{1}+32 \lambda_{2}+40 \lambda_{3}+5 \lambda_{4} \\
& \left\{\begin{array}{l}
\left.\lambda \in[0,1]^{4}: \sum_{i=1}^{4} \lambda_{i}=1\right\}=: \Delta^{4} \\
\lambda_{1} \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2}+y_{3}, \\
\lambda_{4} \leq y_{3}, \quad \sum_{i=1}^{3} y_{i}=1, \quad y \in\{0,1\}^{3}
\end{array}\right.
\end{aligned}
$$

```
y}=1=>\lambda\in\mp@subsup{P}{1}{}:={\lambda\in\mp@subsup{\Delta}{}{4}:\mp@subsup{\lambda}{3}{},\mp@subsup{\lambda}{4}{}\leq0
y2}=1=>\lambda\in\mp@subsup{P}{2}{}:={\lambda\in\mp@subsup{\Delta}{}{4}:\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{4}{}\leq0
y3}=1=>\lambda\in\mp@subsup{P}{3}{}:={\lambda\in\mp@subsup{\Delta}{}{4}:\mp@subsup{\lambda}{1}{},\mp@subsup{\lambda}{2}{}\leq0
```


Disjunciones Especiales

$$
\begin{aligned}
& x=0 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+4 \lambda_{4} \quad \text { SOS2 Constraints } \\
& z \geq 10 \lambda_{1}+32 \lambda_{2}+40 \lambda_{3}+5 \lambda_{4} \\
& \left\{\lambda \in[0,1]^{4}: \sum_{i=1}^{4} \lambda_{i}=1\right\}=: \Delta^{4} \\
& \lambda_{1} \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2}+y_{3}, \\
& \lambda_{4} \leq y_{3}, \quad \sum_{i=1}^{3} y_{i}=1, \quad y \in\{0,1\}^{3}
\end{aligned} \quad \lambda \in \bigcup_{i=1}^{4} P_{i}
$$

$$
\begin{aligned}
& y_{1}=1 \Rightarrow \lambda \in P_{1}:=\left\{\lambda \in \Delta^{4}: \lambda_{3}, \lambda_{4} \leq 0\right\} \\
& y_{2}=1 \Rightarrow \lambda \in P_{2}:=\left\{\lambda \in \Delta^{4}: \lambda_{1}, \lambda_{4} \leq 0\right\} \\
& y_{3}=1 \Rightarrow \lambda \in P_{3}:=\left\{\lambda \in \Delta^{4}: \lambda_{1}, \lambda_{2} \leq 0\right\}
\end{aligned}
$$

Disjunciones Especiales

$$
\begin{array}{|l}
\left.\begin{array}{l}
x=0 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+4 \lambda_{4} \\
z \geq 10 \lambda_{1}+32 \lambda_{2}+40 \lambda_{3}+5 \lambda_{4} \\
\left\{\lambda \in[0,1]^{4}: \sum_{i=1}^{4} \lambda_{i}=1\right\}=: \Delta^{4} \\
\lambda_{1} \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2}+y_{3}, \\
\lambda_{4} \leq y_{3}, \quad \sum_{i=1}^{3} y_{i}=1, \quad y \in\{0,1\}^{3}
\end{array}\right\} \\
\begin{array}{l}
y_{1}=1 \Rightarrow \lambda \in P_{1}:=\left\{\lambda \in \Delta^{4}: \lambda_{3}, \lambda_{4} \leq 0\right\} \\
y_{2}=1 \Rightarrow \lambda \in P_{2}:=\left\{\lambda \in \Delta^{4}: \lambda_{1}, \lambda_{4} \leq 0\right\} \\
y_{3}=1 \Rightarrow \lambda \in P_{3}:=\left\{\lambda \in \Delta^{4}: \lambda_{1}, \lambda_{2} \leq 0\right\}
\end{array} \\
\hline
\end{array}
$$

Disjunciones Especiales (DE)

$$
\begin{aligned}
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right) & P\left(F_{i}\right)
\end{aligned}:=\left\{\lambda \in \Delta^{n}: \lambda_{j} \leq 0 \forall j \in F_{i}\right\}, 1 \text { 挂 }:=\left\{\lambda \in[0,1]^{n}: \sum_{i=1}^{n} \lambda_{i}=1\right\}
$$

- SOS1:
- SOS2:
- Funciones Lineales por trazos.

Formulación Estándar

$x \in \bigcup_{i=1}^{m} P_{i} \subset \mathbb{R}^{n}$	$A^{i} x^{i} \leq b^{i} y_{i} \quad \forall i$
$P_{i}:=\left\{x \in \mathbb{R}: A^{i} x \leq b^{i}\right\}$	$\sum_{i=1}^{m} x^{i}=x$
$A^{i} \in \mathbb{R}^{r \times n}, b^{i} \in \mathbb{R}^{r_{i}}$	$\sum_{i=1}^{m} y_{i}=1$
	$y \in\{0,1\}^{M}$

- Sharp y localmente Ideal.
variables y
restricciones.

SOS1, SOS2 and Piecewise Linear

Eliminar copias de en formulacion

| $\sum_{j=1}^{n} \lambda_{j}^{i}=y_{i}$ | | $\sum_{i=1}^{m} \lambda^{i}=\lambda$ |
| ---: | :--- | ---: | :--- |
| $0 \leq \lambda_{j}^{i} \leq y_{i}$ | $\forall j \notin F_{i}$ | $\sum_{i=1}^{m} y_{i}=1$ |
| $0 \leq \lambda_{j}^{i} \leq 0$ | $\forall j \in F_{i}$ | $y \in\{0,1\}^{m}$ |

\square

Formulación Estándar para DE

$$
\begin{array}{rlrl}
\lambda \in \bigcup_{i=1}^{m} P\left(F_{i}\right) & P\left(F_{i}\right) & :=\left\{\lambda \in \Delta^{n}: \lambda_{j} \leq 0 \forall j \in F_{i}\right\} \\
\Delta^{n} & :=\left\{\lambda \in[0,1]^{n}: \sum_{i=1}^{n} \lambda_{i}=1\right\}
\end{array}
$$

$\sum_{j=1}^{n} \lambda_{j}^{i}=y_{i}$	$\sum_{i=1}^{m} \lambda^{i}=\lambda$
$0 \leq \lambda_{j}^{i} \leq y_{i}$	$\forall j \notin F_{i}$
$0 \leq \lambda_{j}^{i} \leq 0$	$\forall j \in F_{i}$

- Sharp y localmente Ideal.

SOS1, SOS2 and Piecewise Linear

Eliminar copias de en formulacion

$$
\begin{array}{|c}
\sum_{j=1}^{n} \lambda_{j}^{i}=y_{i} \\
0 \leq \lambda_{j}^{i} \leq y_{i} \\
0 \leq \lambda_{j}^{i} \leq 0
\end{array} \quad \forall j \in F_{i} \quad \begin{aligned}
& \sum_{i=1}^{m} \lambda_{i}^{i}=\lambda \\
& \sum_{i=1}^{m} y_{i}=1 \\
& y \in\{0,1\}^{m} \\
& \hline
\end{aligned}
$$

$$
\sum_{j=1}^{n} \lambda_{j}=1,
$$

SOS1, SOS2 and Piecewise Linear
Eliminar copias de en formulacion

$\begin{array}{ll} \sum_{j=1}^{n} \lambda_{j}^{i}=y_{i} & \\ \begin{array}{ll} 0 \leq \lambda_{j}^{i} & \leq y_{i} \end{array} \quad \forall j \notin F_{i} \\ 0 \leq \lambda_{j}^{i} \leq 0 & \forall j \in F_{i} \end{array}$	$\begin{aligned} \sum_{i=1}^{m} \lambda^{i} & =\lambda \\ \sum_{i=1}^{m} y_{i} & =1 \\ y & \in\{0,1\}^{m} \end{aligned}$
$\sum_{j=1}^{n} \lambda_{j}=1, \quad \lambda \geq 0$	

SOS1, SOS2 and Piecewise Linear

Eliminar copias de en formulacion

| $\sum_{j=1}^{n} \lambda_{j}^{i}=y_{i}$ |
| :---: | :---: |
| $0 \leq \lambda_{j}^{i} \leq y_{i}$ |
| $0 \leq \lambda_{j}^{i} \leq 0$ |$\quad \forall j \notin F_{i}$

$\sum_{j=1}^{n} \lambda_{j}=1, \quad \lambda \geq F_{i}$$\quad$| $\sum_{i=1}^{m} \lambda^{i}=\lambda$ |
| :---: |
| $y \in\left\{0, \quad \lambda_{j} \leq \sum_{i: j \neq F_{i}}^{m} y_{i}=1\right.$ |
| y, |

SOS1, SOS2 and Piecewise Linear
Eliminar copias de en formulacion

$$
\sum_{j=1}^{n} \lambda_{j}=1, \quad \lambda \geq 0, \quad \lambda_{j} \leq \sum_{i: j \notin F_{i}} y_{i}
$$

SOS1, SOS2 and Piecewise Linear

Eliminar copias de en formulacion

$\sum_{j=1}^{n} \lambda_{j}^{i}=y_{i}$	$\sum_{i=1}^{m} \lambda^{i}=\lambda$
$0 \leq \lambda_{j}^{i} \leq y_{i}$	$\forall j \notin F_{i}$
$0 \leq \lambda_{j}^{i} \leq 0$	$\forall j \in F_{i}$

$$
\sum_{j=1}^{n} \lambda_{j}=1, \quad \lambda \geq 0, \quad \lambda_{j} \leq \sum_{i: j \notin F_{i}} y_{i}, \quad \sum_{i=1}^{m} y_{j}=1, \quad y \in\{0,1\}^{m}
$$

Eliminar copias de en formulacion

$\sum_{j=1}^{n} \lambda_{j}^{i}=y_{i}$	$\sum_{i=1}^{m} \lambda^{i}=\lambda$
$0 \leq \lambda_{j}^{i} \leq y_{i} \quad \forall j \notin F_{i}$	$\sum_{i=1}^{m} y_{i}=1$
$0 \leq \lambda_{j}^{i} \leq 0 \quad \forall j \in F_{i}$	$y \in\{0,1\}^{m}$

$$
\sum_{j=1}^{n} \lambda_{j}=1, \quad \lambda \geq 0, \quad \lambda_{j} \leq \sum_{i: j \notin F_{i}} y_{i}, \quad \sum_{i=1}^{m} y_{j}=1, \quad y \in\{0,1\}^{m}
$$

- Formulación Tradicional para FLT
- Sharp pero no localmente ideal.

Formulacion Logaritmica para SOS1

$$
\begin{aligned}
& \sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \text { at most } 1 \lambda_{j} \text { is nonzero. } \\
& \text { Allowed sets: } S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\} .
\end{aligned}
$$

i S_{i} $B(i)$	- Injective function:
0 (00) $\longleftrightarrow 00$	
1 (11) $\longleftrightarrow 10$	- Variables:
$2\{2\} \longleftrightarrow 0010$	- Idea:

\square

Formulacion Logaritmica para SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Formulacion Logaritmica para SOS1	
$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$. 	

Formulacion Logaritmica para SOS1
$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Formulacion Logaritmica para SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Formulacion Logaritmica para SOS1

$$
\begin{aligned}
& \sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0, \text { at most } 1 \lambda_{j} \text { is nonzero. } \\
& \text { Allowed sets: } S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\} .
\end{aligned}
$$

$\begin{array}{llll}i & S_{i} & B(i)\end{array}$		- Injective function:
	$\lambda_{1}+\lambda_{3} \leq w_{1}$	
1 \{13) $\longleftrightarrow 10$	$\lambda_{0}+\lambda_{2} \leq\left(1-w_{1}\right)$	- Variables:
		- Idea:

Formulacion Logaritmica para SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero.
Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

- Injective function:
- Variables:
- Idea:

Formulacion Logaritmica para SOS1
$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

Formulacion Logaritmica para SOS1

$\sum_{j=0}^{3} \lambda_{j}=1, \quad \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$, at most $1 \lambda_{j}$ is nonzero. Allowed sets: $S_{0}=\{0\}, S_{1}=\{1\}, S_{2}=\{2\}, S_{3}=\{3\}$.

$\left\{\right.$| i | S_{i} | $B(i)$ | | |
| :--- | :--- | :--- | :---: | :---: |
| 0 | $\{0\}$ | $\longleftrightarrow 0$ | | |

- In general:

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

$\begin{array}{llll}i & S_{i} & B(i)\end{array}$	- Injective function:
$0 \quad\{0,1\} \longleftrightarrow 000$	
$1 \xrightarrow{11,2\}} \longleftrightarrow 10$	- Variables:
$2 \leftrightarrow 2,3\} \longleftrightarrow 0 \quad 1$	- Idea:

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2
$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero.
Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero.
Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2
$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $\quad S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2	

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

- Where is ?!

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero.
Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Formulacion Logaritmica para SOS2

$$
\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0, \text { only } 2 \text { adjacent } \lambda_{j} \text { 's ar nonzero. }
$$

$$
\text { Allowed sets: } S_{i}=\{i, i+1\} \quad \text { for } i \in\{0, \ldots, 3\}
$$

Formulacion Logaritmica para SOS2	

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero. Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

- Where is ?!

Ramificacion Independiente

Formulacion Logaritmica para SOS2

$\sum_{j=0}^{4} \lambda_{j}=1, \quad \lambda_{0}, \ldots, \lambda_{4} \geq 0$, only 2 adjacent λ_{j} 's ar nonzero.
Allowed sets: $S_{i}=\{i, i+1\} \quad$ for $i \in\{0, \ldots, 3\}$.

Logarithmic Formulations

Ramificacion Independiente para FLT

- Seleccionar triángulo prohibiendo vértices.
- 2 etapas:
- Seleccionar cuadrado con SOS2 por variable.
- Seleccionar 1 triángulo de cada cuadtado.

Ramificacion Independiente para FLT

- Seleccionar triángulo prohibiendo vértices.
- 2 etapas:
- Seleccionar cuadrado con SOS2 por variable.
- Seleccionar 1 triángulo de cada cuadtado.

Logarithmic Formulations

Ramificacion Independiente para FLT

- Seleccionar triángulo prohibiendo vértices.
- 2 etapas:
- Seleccionar cuadrado con SOS2 por variable.
- Seleccionar 1 triángulo de cada cuadtado.

$$
\begin{aligned}
\bar{L}= & \{(r, s) \in J: \\
& r \text { even and } s \text { odd }\} \\
= & \{\text { square vertices }\} \\
\bar{R}= & \{(r, s) \in J: \\
& r \text { odd and } s \text { even }\} \\
= & \{\text { diamond vertices }\}
\end{aligned}
$$

[^0]: $x=0 \lambda_{(0,0)}+1 \lambda_{(1,0)}+0 \lambda_{(0,1)}+1 \lambda_{(1,1)} \quad$ Polytopes that have $y=0 \lambda_{(0,0)}+0 \lambda_{(1,0)}+1 \lambda_{(0,1)}+1 \lambda_{(1,1)},(0,0)$ as a vertex.
 $z \geq 0 \lambda_{(0,0)}+1 \lambda_{(1,0)}+1 \lambda_{(0,1)}+1 \lambda_{(1,1)}$
 $1=\lambda_{(0,0)}+\lambda_{(1,0)}+\lambda_{(0)}+\lambda_{(1,1)}, \quad \lambda_{(0,0)}, \ldots, \lambda_{(1,1)} \geq 0$
 $\lambda_{(0,0)}=y_{P_{1}}+y_{P_{1}} \cdots y_{P_{1}}+y_{P_{1}}=1, \quad y_{P_{1}}, y_{P_{1}} \in\{0,1\}$

