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Vendedor Viajero y Programación Entera

Recorrer Ciudades lo Mas Rápido
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Vendedor Viajero y Programación Entera

Podemos Enumerar las Rutas?
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Nro. de Ciudades Nro. de Soluciones Factibles
10 10 5.5

100 10 156

1,000 10 2,565

33,810 10 138,441

85,900 10 456,000

Edad del universo
(en segundos) 10 18

Número de átomos en 
el universo < 10 100
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Vendedor Viajero y Programación Entera

Modelo Programación Entera (PE)
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min
�

e∈E
dexe

st�
e∈δ(i)

xe = 2 ∀i ∈ V
�

e∈δ(S)

xe ≥ 2 ∀S � V

xe ∈ {0, 1} ∀e ∈ E
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Vendedor Viajero y Programación Entera

Recorrer Alemania con PE
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120 ciudades
(1977)

45 ciudades
(1832)

15,112 ciudades
(2004)
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Programación Entera Mixta

Problema de Programación Entera
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max
N�

i=1

aixi

Ax ≤ b

xi ∈ Z ∀i ∈ I ⊂ {1, . . . , N}
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Ejemplos y Applicaciones

Combinatorial o 0-1

Minería

Forestal

Computación Biológica

Entera Mixta

Alternativas, Funciones No-lineales, 
Restricciones Probabilísticas 

7
7

/27

Minería

Mina de Tajo/Rajo Abierto
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Minería

Modelo de Bloque
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Minería

Que bloques extraer?
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Minería

Variables: Extraer o No
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1 2 3
4 5 6

xi =






1 si el bloque i

es extraido

0 si no

Restricciones y Objetivos Lineales:

VPN, capacidad de extracción/procesamiento, 
etc.

Restricciones Combinatoriales:

Reglas de precedencia
11
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Minería

Extraer = Reglas de Precedencia
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1 2 3
4 5 6

x5 ≤ x1

x5 ≤ x2

x5 ≤ x3

12
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Forestal

Problema de Planificación Forestal
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Forestal

Problema de Planificación Forestal
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Seleccionar “celdas” para cosecha 

13
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Forestal

Problema de Planificación Forestal
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Seleccionar “celdas” para cosecha 

Maximizar VPN

Proteger Medio 
Ambiente
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Forestal

Variables: Cuando Cosechar

14

Introduction Green–Up Constraints Two Implementations of Green–Up Computational Results

ARM Includes Aggregation of Cells in the Problem

1

6

5

2 4

3 10

9

8

7

11

Forest composed of small management units (Cells).

Cluster = Groups of adjacent cells.

Feasible Cluster = Area-complying clusters.

Solution is group of non-adjacent feasible clusters.

Restricciones y Objetivos Lineales:

VPN, flujo de madera, edad final del bosque, etc.

Restricciones Combinatoriales:

Proteger el Medio Ambiente

xv,t =






1 si celda v es cosechada

en el periodo t.

0 si no

14
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Forestal

Formas de Proteger el Ambiente

No cosechar grandes 
áreas contiguas

erosión 

animales no cruzan

belleza escénica

Reservas contiguas
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Forestal

No cosechar grandes áreas contiguas
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1

2

10

11

5

6

8

9

7

4

3

1

2

10

11

5

6

8

9

7

4

3

Aceptable No Aceptable
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Forestal

Prohibir Cosechas No Aceptables
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1

2

10

11

5

6

8

9

7

4
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Forestal

Prohibir Cosechas No Aceptables

17

1

2

10

11

5

6

8

9

7

4

3

x1 + x2 + x3 + x4 + x5 ≤ 4

17
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Computación Biológica

Alineamiento de Proteinas

18

Compact optimization can outperform separation 225

a b c

Fig. 1. a An unfolded protein. b After folding. c The contact map graph

Our result is related to the famous theorem by Grötschel, Lovász, Schrijver
(Grötschel et al. 1981) which states that a linear programming relaxation is poly-
nomially solvable if and only if its separation problem is polynomially solvable.
Theorem 1 basically states that a linear programming relaxation is polynomially
solvable via the solution of one suitable LP if and only if its separation problem
is polynomially solvable by solving one suitable LP. We give the LP formulations
of Carr and Lancia (2002) again here. Let

min c · x

s.t.
Ax ≥ b

be the LP associated by the relaxation ! to a generic instance of OC.
Suppose the LP formulation of the separation problem for (OC, !), given a

fractional point x∗, is:

min x∗ · a − b0
s.t.

(Da Db0 Dw) ·




a

b0
w



 ≥ d

a, b0, w ≥ 0.

(1)

Then an LP relaxation !′ exhibiting compact optimization is given by:

min c · x

s.t.
y · Da ≤ x

y · Db0 ≤ −1
y · Dw ≤ 0
y · d ≥ 0

y ≥ 0.

(2)

The converse of this is proved in Carr and Lancia (2002).

3 The contact map overlap problem

A protein consists of a linear chain of residues, also called amino acids, along
its backbone. In an aqueous solution, in which the protein occurs naturally, the
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G 1

G 2

Fig. 2. An alignment of value 5

vertices adjacent to i and greater than i (respectively, smaller than i) in the linear
order defined over V . Let M denote the collection of all sets of mutually crossing
lines (i.e., each element F of M is a set of lines, and, for any l′, l′′ ∈ F , with
l′ #= l′′, l′ and l′′ cross). The IP formulation, first proposed in Lancia et al. (2001),
is the following:

max 1 · y

s.t. ∑
j∈V +

1 (i) y(i,j)(u,v) ≤ xiu ∀i ∈ V1, ∀(u, v) ∈ E2∑
j∈V −

1 (i) y(j,i)(u,v) ≤ xiv ∀i ∈ V1, ∀(u, v) ∈ E2∑
v∈V +

2 (u) y(i,j)(u,v) ≤ xiu ∀u ∈ V2, ∀(i, j) ∈ E1∑
v∈V −

2 (u) y(i,j)(v,u) ≤ xiv ∀u ∈ V2, ∀(i, j) ∈ E1∑
(u,v)∈F xuv ≤ 1 ∀F ∈ M

x, y ∈ {0, 1}.

(3)

The cryptic constraints relating the y variables to the x variables are just capturing
the simpler relationship y(i,j)(u,v) ≤ min(xiu, xjv).

Each constraint
∑

(u,v)∈F

xuv ≤ 1, with F ∈ M

is called a clique inequality. The name comes from considering a conflict graph C

for the alignment lines. In this graph, every alignment line (i, j) is a vertex, and
two alignment lines are connected by an edge if they cross. A clique in C is then a
set of mutually crossing alignment lines.

Although there are exponentially many clique inequalities (Lancia et al. 2001),
the LP relaxation of (3) can be solved in polynomial time because there are polyno-
mial time separation algorithms for the class of clique inequalities. Two different
such separation algorithms are given in Lenhof et al. (1998) and Lancia et al. (2001).
They are both based on Dynamic Programming (for finding the longest path in an
acyclic graph), and have similar time performance bounds. The former algorithm
is simpler and seems generally preferable, so we present just this algorithm here.

Carr y Lancia 2004
18
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Computación Biológica

19

max
�

(i,j)∈E1, (u,v)∈E2

y(i,j),(u,v)

y(i,j),(u,v) ≤ xi,u

y(i,j),(u,v) ≤ xj,v
�

(u,v)∈F

xu,v ≤ 1 ∀F ∈ C

xu,v, y(i,j),(u,v) ∈ {0, 1} ∀u, v, i, j
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Disjunciones

Disjunciones o Alternativas

20

f(x,y)

y

x
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Disjunciones: Restricciones Probabilísticas

Restricciones Probabilísticas

21

Q :=
�
x ∈ Rd : P

�
x ≥ ξ

�
≥ 1− δ

�
ξ ∼ U

�
{ξs}Ss=1

�

A standard MILP formulation of probabilistic constraint (97b) [113] is

x ≥ (1− zs)ξs ∀s ∈ {1, . . . , S} (98a)
S�

s=1

zs ≤ �δS�, (98b)

zs ∈ {0, 1} ∀s ∈ {1, . . . , S}. (98c)

This formulation uses binary variables z ∈ {0, 1}S such that zs = 0 if x ≥ ξs and zs = 1

if x � ξs and restricts the number of violated x ≥ ξs inequalities through cardinality

constraint (98b). Formulation, (98) can be very weak, so valid inequalities for it have been

developed in [74, 89, 90]. These valid inequalities significantly strengthen the formulation,

but are deduced by only considering one row of d-row system (98a) at a time. In this

chapter we study the strength of these 1-row valid inequalities and evaluate the potential

advantage of developing valid inequalities that consider more than one row at a time.

In Section 5.2 we review existing MILP formulations for constraint (97b). In Section 5.3

we introduce an extended MILP formulation of (97b) that generalizes a formulation intro-

duced in [74] for the case d = 1. In Section 5.4 we study the strength of the 1-row relaxation

theoretically and in Section 5.5 we compare the strength of the 1-row and 2-row relaxations

computationally. Finally, in Section 5.6 we present some conclusions.

5.2 Existing MILP Formulations

We now review existing MILP formulations for Qx := {x ∈ Rd : P
�
x ≥ ξ

�
≥ 1− δ}.

Let k := �δS� and for each x ∈ Rd let v(x) := {s ∈ {1, . . . , S} : x � ξs} be the index

set for which x violates constraint x ≥ ξ. We then have that Qx = {x ∈ Rd : |v(x)| ≤ k}

and hence we have the following disjunctive characterization

Qx =
�

J⊂{1,...,S}
|J |=S−k

�
x ∈ Rd : x ≥ ξs ∀s ∈ J

�
. (99)

Then using Corollary 2.1.2 of [9] we can construct an extended MILP formulation of Qx that

is as strong as any MILP formulation for Qx. Unfortunately, the size of this formulation

is Θ
�
d
� S
S−k

��
and hence exponential in S for fixed δ, which makes it computationally

107

Q =
�
x ∈ Rd : |v(x)| ≤ �δD� =: k

�

21
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Disjunciones: Restricciones Probabilísticas

Ejemplo: Violar 3 Restricciones

22

0 10 20
0

10

20

2111

11

21

k = 3

Q =

�
x ∈ R2 : x ≥

�
10
20

��

∪
�
x ∈ R2 : x ≥

�
20
10

��
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Disjunciones: Lineales por Trazos

Lineales por trazo = Union de lineas

23
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Figure 7: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.
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Figure 8: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.
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Figure 9: Epigraph of a lower semicontinuous piecewise linear function as unions of polyhedra.

Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the

23
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Disjunciones: Lineales por Trazos

Lineales por trazo = Union de lineas
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= ∪ ∪
(a) Continuous function.

= ∪

(b) Lower semicontinuous function.

Figure 2: Examples of triangulations of subsets of 2.
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Disjunciones: Lineales por Trazos

Modelo Combinacion Convexa
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23 24

x = 0λ1 + 2λ2 + 4λ3

f(x) = 1λ1 + 3λ2 + 0λ3

1 = λ1 + λ2 + λ3, λ1,λ2λ3 ≥ 0

λ1 ≤ y1, λ2 ≤ y1 + y2, λ3 ≤ y2

1 = y1 + y2, y1, y2 ∈ {0, 1}

idea: escribir (x, f(x))

como combinacion covexa

(0, f(0)), (2, f(2)), (4, f(4))
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Disjunciones: Lineales por Trazos

Modelo Combinacion Convexa
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Example 2: The function given in Figure 5 can be described as:

f(x) :=






1.5x + 1 x ∈ [0, 1)
2 x ∈ [2, 2]

−1.5x + 6 x ∈ (2, 4]
2x− 7 x ∈ [4, 5].

(28)

The inclusion of points described as {d} = [d, d] does not extend Definition 1 as we did not require the
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x = 0λ1 + 2λ2 + 4λ3

f(x) = 1λ1 + 3λ2 + 0λ3

1 = λ1 + λ2 + λ3, λ1,λ2λ3 ≥ 0

λ1 ≤ y1, λ2 ≤ y1 + y2, λ3 ≤ y2

1 = y1 + y2, y1, y2 ∈ {0, 1}
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λ1 y λ3 no pueden

ser > 0 al mismo

tiempo.
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λ1 y λ3 no pueden

ser > 0 al mismo
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Libros

Libros con Modelamiento Básico
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25

/26

Que significa modelar con PE?

26

x ∈ S ⊂ Rn

∃y ∈ Rm t.q.

Ax+Dy ≤ b,

xi ∈ Z ∀i ∈ I ⊂ {1, . . . , n}
yj ∈ Z ∀j ∈ J ⊂ {1, . . . ,m}

⇔

26
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