Modelamiento Avanzado con Programación

 Entera MixtaParte 1/3

Juan Pablo Vielma
University of Pittsburgh

Universidad de Antofagasta, 2011 - Antofagasta, Chile

Vendedor Viajero y Programación Entera

Podemos Enumerar las Rutas?

Nro. de Ciudades	Nro. de Soluciones Factibles
10	$10^{5.5}$
100	10^{156}
1,000	$10^{2.565}$
33,810	$10^{138,441}$
85,900	$10^{456,000}$

Edad del universo (en segundos)	10^{18}
Nómero de átomos en el universo	$<10^{100}$

Recorrer Ciudades lo Mas Rápido

Vendedor Viajero y Programación Entera
 Modelo Programación Entera (PE)

$$
\begin{aligned}
& \min \sum_{e \in E} d_{e} x_{e} \\
& \text { st } \\
& \sum_{e \in \delta(i)} x_{e}=2 \quad \forall i \in V \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall S \subsetneq V \\
& x_{e} \in\{0,1\} \quad \forall e \in E
\end{aligned}
$$

Ejemplos y Applicaciones

- Combinatorial o 0-1
- Minería
- Forestal
- Computación Biológica
- Entera Mixta
- Alternativas, Funciones No-lineales, Restricciones Probabilísticas

Programación Entera Mixta
 Problema de Programación Entera

Minería	

Mina de Tajo/Rajo Abierto

Minería	

Modelo de Bloque

$9 / 27$
9

Minería

Variables: Extraer o No

$$
x_{i}= \begin{cases}1 & \text { si el bloque } i \\ & \text { es extraido } \\ 0 & \text { si no }\end{cases}
$$

- Restricciones y Objetivos Lineales:
- VPN, capacidad de extracción/procesamiento, etc.
- Restricciones Combinatoriales:
- Reglas de precedencia

Minería
Que bloques extraer?

Minería

Extraer = Reglas de Precedencia

$$
\begin{aligned}
& x_{5} \leq x_{1} \\
& x_{5} \leq x_{2} \\
& x_{5} \leq x_{3}
\end{aligned}
$$

Forestal

Problema de Planificación Forestal

Problema de Planificación Forestal

Forestal

Variables: Cuando Cosechar

$x_{v, t}= \begin{cases}1 & \text { si celda } v \text { es cosechada } \\ \text { en el periodo } t . \\ 0 & \text { si no }\end{cases}$

- Restricciones y Objetivos Lineales:
- VPN, flujo de madera, edad final del bosque, etc.
- Restricciones Combinatoriales:
- Proteger el Medio Ambiente

Forestal

Prohibir Cosechas No Aceptables

Forestal

No cosechar grandes áreas contiguas

- Aceptable

16/27

Forestal

Prohibir Cosechas No Aceptables

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 4
$$

Computación Biológica	

Alineamiento de Proteinas

- Carr y Lancia 2004

Computación Biológica

$$
\begin{array}{rll}
\max \quad \sum_{(i, j) \in E_{1},(u, v) \in E_{2}} & y_{(i, j),(u, v)} & \\
y_{(i, j),(u, v)} \leq x_{i, u} & \\
y_{(i, j),(u, v)} \leq x_{j, v} & \\
\sum_{(u, v) \in F} x_{u, v} \leq 1 & \forall F \in \mathcal{C} \\
& x_{u, v}, y_{(i, j),(u, v)} \in\{0,1\} & \forall u, v, i, j
\end{array}
$$

$$
\begin{aligned}
& \max \sum_{(i, j),(u, v)} \\
& (i, j) \in E_{1},(u, v) \in E_{2} \\
& y_{(i, j),(u, v)} \leq x_{i, u} \\
& y_{(i, j),(u, v)} \leq x_{j, v} \\
& \sum_{(u, v) \in F} x_{u, v} \leq 1 \quad \forall F \in \mathcal{C} \\
& x_{u, v}, y_{(i, j),(u, v)} \in\{0,1\} \quad \forall u, v, i, j
\end{aligned}
$$

$$
\begin{aligned}
\max \sum_{(i, j) \in E_{1},(u, v) \in E_{2}} & y_{(i, j),(u, v)} & \\
y_{(i, j),(u, v)} & \leq x_{i, u} & \\
y_{(i, j),(u, v)} & \leq x_{j, v} & \\
\sum_{(u, v) \in F} x_{u, v} & \leq 1 & \forall F \in \mathcal{C} \\
x_{u, v}, y_{(i, j),(u, v)} & \in\{0,1\} & \forall u, v, i, j
\end{aligned}
$$

Disjunciones o Alternativas

$$
x=0 \quad \vee \quad 1 \leq x \leq 2
$$

Disjunciones: Restricciones Probabilísticas

Ejemplo: Violar 3 Restricciones

Restricciones Probabilísticas

$$
\begin{aligned}
& Q:=\left\{x \in \mathbb{R}^{d}: \mathbb{P}(x \geq \xi) \geq 1-\delta\right\} \quad \xi \sim U\left(\left\{\xi^{s}\right\}_{s=1}^{S}\right) \\
& Q=\left\{x \in \mathbb{R}^{d}:|v(x)| \leq\lfloor\delta D\rfloor=: k\right\} \\
& v(x):=\left\{s \in\{1, \ldots, S\}: x \nsupseteq \xi^{s}\right\}
\end{aligned}
$$

Lineales por trazo = Union de lineas

Lineales por trazo = Union de lineas

Disjunciones: Lineales por Trazos

Modelo Combinacion Convexa

x	$=0 \lambda_{1}+2 \lambda_{2}+4 \lambda_{3}$
$f(x)$	$=1 \lambda_{1}+3 \lambda_{2}+0 \lambda_{3}$
1	$=\lambda_{1}+\lambda_{2}+\lambda_{3}, \quad \lambda_{1}, \lambda_{2} \lambda_{3} \geq 0$
idea: escribir $(x, f(x)) \quad$	
como combinacion covexa	
$(0, f(0)),(2, f(2)),(4, f(4))$	

Disjunciones: Lineales por Trazos

Modelo Combinacion Convexa

Disjunciones: Lineales por Trazos

Modelo Combinacion Convexa

$$
\begin{aligned}
\lambda_{1} \text { y } \lambda_{3} \text { no pueden } & x & =0 \lambda_{1}+2 \lambda_{2}+4 \lambda_{3} \\
\text { ser }>0 \text { al mismo } & f(x) & =1 \lambda_{1}+3 \lambda_{2}+0 \lambda_{3} \\
\text { tiempo. } & 1 & =\lambda_{1}+\lambda_{2}+\lambda_{3}, \quad \lambda
\end{aligned}
$$

Disjunciones: Lineales por Trazos \quad

Modelo Combinacion Convexa

$$
\begin{array}{rlrl}
\lambda_{1} \text { y } \lambda_{3} \text { no pueden } & x & =0 \lambda_{1}+2 \lambda_{2}+4 \lambda_{3} \\
\text { ser }>0 \text { al mismo } & f(x) & =1 \lambda_{1}+3 \lambda_{2}+0 \lambda_{3} \\
\text { tiempo. } & 1 & =\lambda_{1}+\lambda_{2}+\lambda_{3}, \quad \lambda_{1}, \lambda_{2} \lambda_{3} \geq 0 \\
\lambda_{1} & \leq y_{1}, \quad \lambda_{2} \leq y_{1}+y_{2}, \quad \lambda_{3} \leq y_{2} \\
1 & =y_{1}+y_{2}, \quad y_{1}, y_{2} \in\{0,1\}
\end{array}
$$

Que significa modelar con PE?

Libros

Libros con Modelamiento Básico

