Mixed Integer Programming (MIP) for Daily Fantasy Sports, Statistics and Marketing

Juan Pablo Vielma

Massachusetts Institute of Technology

AM/ES 121, SEAS, Harvard. Boston, MA, November, 2016. MIP & Daily Fantasy Sports

Example Entry

Avg. Rem. / Player: \$0 Rem. Salary: \$0						
POS	PLAYER	OPP	FPPG	SALARY		
с	Jussi Jokinen	Fla@Anh	3.1	\$5,300	×	
с	Brandon Sutter	Pit@Van	3.0	\$4,400	×	
W	Nikolaj Ehlers	Wpg@Tor	3.9	\$4,800	×	
Ŵ	Daniel Sedin 🗎	Pit@Van	3.8	\$6,400	×	
W	Radim Vrbata 🗎	Pit@Van	3.4	\$5,800	×	
D	Brian Campbell 🗎	Fla@Anh	2.6	\$4,100	×	
D	Morgan Rielly 🗎	Wpg@Tor	3.5	\$4,200	×	
G	Corey Crawford P 🗎	StL@Chi	6.3	\$7,800	×	
UTIL	Blake Wheeler 🗎	Wpg@Tor	4.8	\$7,200	×	

Building a Lineup

Integer Programming Formulation

- We will make a bunch of lineups consisting of 9 players each
- Use an integer programming approach to find these lineups

Decision variables

$$x_{pl} = \begin{cases} 1, & \text{if player } p \text{ in lineup } l \\ 0, & \text{otherwise} \end{cases}$$

Basic Feasibility

- 9 different players
- Salary less than \$50,000

Basic constraints

$$\sum_{p=1}^{N} c_p x_{pl} \leq \$50,000, \quad \text{(budget constraint)}$$
$$\sum_{p=1}^{N} x_{pl} = 9, \quad \text{(lineup size constraint)}$$
$$x_{pl} \in \{0,1\}, \quad 1 \leq p \leq N.$$

Position Feasibility

- Between 2 and 3 centers
- Between 3 and 4 wingers
- Between 2 and 3 defensemen
- 1 goalie

Position constraints

$$2 \leq \sum_{p \in C} x_{pl} \leq 3,, \quad \text{(center constraint)}$$
$$3 \leq \sum_{u \in W} x_{pl} \leq 4, \quad \text{(winger constraint)}$$
$$2 \leq \sum_{u \in D} x_{pl} \leq 3, \quad \text{(defensemen constraint)}$$
$$\sum_{u \in G} x_{pl} = 1 \quad \text{(goalie constraint)}$$

Team Feasibility

• At least 3 different NHL teams

Team constraints

$$\begin{split} t_i &\leq \sum_{p \in T_i} x_{pl}, \quad \forall \ i \in \{1, \ \dots, N_T\} \\ &\sum_{i=1}^{N_T} t_i \geq 3, \\ t_i &\in \{0, \ 1\}, \quad \forall \ i \in \{1, \ \dots, N_T\}. \end{split}$$

Maximize Points

• Forecasted points for player p: f_p

Score type	Points
Goal	3
Assist	2
Shot on Goal	0.5
Blocked Shot	0.5
Short Handed Point Bonus (Goal/Assist)	1
Shootout Goal	0.2
Hat Trick Bonus	1.5
Win (goalie only)	3
Save (goalie only)	0.2
Goal allowed (goalie only)	-1
Shutout Bonus (goalie only)	2

Table 1Points system for NHL contests in DraftKings.

Points Objective Function

Lineup

Projections: 5.4 5.7 2.5 3.2 3.5 3.4 3.4 4.2 3.0 \$9500 \$2700 \$4600 \$3800 \$4600 \$6400 \$5200 \$5100 \$8000 W UTIL W W D D С С G

23 points on average

Need > 38 points for a chance to win

Increase variance to have a chance

Structural Correlations - Teams

Structural Correlations - Lines

• Goal = 3 pt, assist = 2 pt

Structural Correlations – Lines = Stacking

- At least 1 complete line (3 players per line)
- At least 2 partial lines (at least 2 players per line)

1 complete line constraint

$$3v_i \leq \sum_{p \in L_i} x_{pl}, \quad \forall i \in \{1, \dots, N_L\}$$
$$\sum_{i=1}^{N_L} v_i \geq 1$$
$$v_i \in \{0, 1\}, \quad \forall i \in \{1, \dots, N_L\}.$$

2 partial lines constraint

$$2w_i \leq \sum_{p \in L_i} x_{pl}, \quad \forall i \in \{1, \dots, N_L\}$$
$$\sum_{i=1}^{N_L} w_i \geq 2$$
$$w_i \in \{0, 1\}, \quad \forall i \in \{1, \dots, N_L\}.$$

Structural Correlations – Goalie Against Opposing Players

Structural Correlations – Goalie Against Skaters

• No skater against goalie

No skater against goalie constraint

$$6x_{pl} + \sum_{q \in Opponents_p} x_{ql} \le 6, \quad \forall p \in G$$

Good, but not great chance

Play many diverse Lineups

• Make sure lineup I has no more than γ players in common with lineups 1 to I-1

Diversity constraint

$$\sum_{p=1}^{N} x_{pk}^{*} x_{pl} \le \gamma, k = 1, \dots, l-1$$

Were we able to do it?

Policy Change

200 lineups -> 100 lineups

Were we able to continue it?

	* 14 0 7	⁸⁴⁶ .d 99	% 🗎 12:05	AM			
← GameCenter							
STANDINGS E	NTRIES	DETAILS	GAME	s			
NHL \$12K Sniper [\$12,000 Guaranteed]							
00 00				D			
1st							
Zlisto			62.50				
2100			PMROD				
6th			58.80				
Z zlisto š \$150.0	0						
KCD0.							
8th			57.40				
ă \$125.0	0						
2000							
13th			55.80				
A \$80.00	6						
16th							
16th zlisto			55.30				
Š \$60.00	0						
20th							
2011			F4 00				

December 12, 2015

100 lineups

> \$15K

https://github.com/dscotthunter/Fantasy-Hockey-IP-Code

http://arxiv.org/pdf/1604.01455v1.pdf

Performance Time < 30 Minutes

MIP and Statistics: Inference for the Chilean Earthquake

The 2010 Chilean Earthquake

6th Strongest in Recorded History (8.8)

Impact on Educational Achievement? PSU = SAT

Earthquake Intensity + Great Demographic Info

Randomized experiment

• Treatment / control have similar characteristics (covariates).

Covariate Balance Important for Inference

	Do	Dose	
Covariate	1	2	
Gender			
Male	462	462	
Female	538	538	
School SES			
Low	75	75	
Mid-low	327	327	
Medium	294	294	
Mid-high	189	189	
High	115	115	
Mother's education			
Primary	335	335	
Secondary	426	426	
Technical	114	114	
College	114	114	
Missing	11	11	
:			

Observational Study: e.g. After Earthquake

• Treatment / control can have different characteristics.

Solution = Matching?

Treated Units: $\mathcal{T} = \{t_1, \ldots, t_T\}$ Control Units: $C = \{c_1, \ldots, c_C\}$ Observed Covariates: $\mathcal{P} = \{p_1, \ldots, p_P\}$ Covariate Values: $\mathbf{x}^t = (x_p^t)_{p \in \mathcal{P}}$, $t \in \mathcal{T}$ $\mathbf{x}^c = \left(x_p^c\right)_{p \in \mathcal{P}}, \quad c \in \mathcal{C}$

Nearest Neighbor Matching

$$\begin{array}{ll} \underset{m}{\text{minimize}} & \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} \delta_{t,c} m_{t,c} \\ \text{subject to} & \sum_{c \in \mathcal{C}} m_{t,c} = 1 \ , \ t \in \mathcal{T} \\ & \sum_{t \in \mathcal{T}} m_{t,c} \leq 1, \ c \in \mathcal{C} \end{array}$$

 $0 \leq m_{t,c} \leq 1 \quad -m_{t,c} \in \{0,1\}, \ t \in \mathcal{T}, c \in \mathcal{C}$

- e.g. $\delta_{t,c} = \left\| \mathbf{x}^t \mathbf{x}^c \right\|_2$
- Easy to solve

Balance Before After Matching

SIMCE school (decile) SIMCE student (decile) GPA ranking (decile) Attendance (decile) Rural school Catholic school High SES school Mid–High SES school Mid SES school Mid–Low SES school Public School

Maximum Cardinality Matching

$$\max \qquad \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t,c}$$

 $\mathcal{K}(p) = \{\mathbf{x}_p^c\}_{c \in \mathcal{P}} \cup \{\mathbf{x}_p^t\}_{t \in \mathcal{T}}$ $\mathcal{C}_{p,k} = \{c \in \mathcal{C} : \mathbf{x}_p^c = k\}$ $\mathcal{T}_{p,k} = \{t \in \mathcal{T} : \mathbf{x}_p^t = k\}$

s.t.

• Very hard to solve (and very hard to understand!)

Advanced Maximum Cardinality Matching

max $\sum x_t$	$\mathcal{K}(p) = \{\mathbf{x}_p^c\}_{c \in \mathcal{P}} \cup \{\mathbf{x}_p^t\}_{t \in \mathcal{T}}$
$\overline{t\in\mathcal{T}}$	$\mathcal{C}_{p,k} = \{ c \in \mathcal{C} \ : \ \mathbf{x}_p^c = k \}$
s.t.	$\mathcal{T}_{p,k} = \{t \in \mathcal{T} : \mathbf{x}_p^t = k\}$
$\sum_{t \in \mathcal{T}} x_t = \sum_{c \in \mathcal{C}} y_c,$	
	$\forall p \in \mathcal{P}, k \in \mathcal{K}(p)$
$x_t \in \{0, 1\}$	$\forall t \in \mathcal{T}$
$y_c \in \{0, 1\}$	$\forall c \in \mathcal{C}.$

- Matching without matching variables
- Easy to solve: Small, but inherits matching properties

Т

SIMCE school (decile) SIMCE student (decile GPA ranking (decile) Attendance (decile) Rural school Catholic school High SES school Mid-High SES school Mid SES school Mid-Low SES school **Public School** Voucher School

• • • • • • • • • • • • • • • • • • • •		
····•		LJ
····•	 	l I
		ı 1
•••••		I I I
•••••••••••••••••••••••••••••••••••••••		
••••••		1
••••		l
•••••	 	, , , ,
••••••	 • • • • • • • • • • • • • • • • • •	۱ ۱ ۱
••••••		, l

Т

Can Also do Multiple Doses

					Dose	
			Covariate	1	2	3
			Gender			
			Male	462	462	462
			Female	538	538	538
			School SES			
• D	00	Se	Low	75	75	75
	1	No quako	Mid-low	327	327	327
-	1. No quake	Medium	294	294	294	
-	2	Medium quake	Mid-high	189	189	189
-	2. Wiedlunguake	High	115	115	115	
	3.	Bad quake	Mother's education			
		•	Primary	335	335	335
			Secondary	426	426	426
			Technical	114	114	114
			College	114	114	114
			Missing	11	11	11

Relative (To no Quake) Attendance Impact

Relative (To no Quake) PSU Score Impact

MIP and Marketing: Chewbacca or BB-8?

Adaptive Preference Questionnaires

Feature	SX530	RX100
Zoom	50x	3.6x
Prize	\$249.99	\$399.99
Weight	15.68 ounces	7.5 ounces
Prefer		

Feature	TG-4	G9
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Weight	7.36 lb	7.5 lb
Prefer		

Feature	TG-4	Galaxy 2	
Waterproof	Yes	No	
Prize	\$249.99	\$399.99	
Viewfinder	Electronic	Optical	
Prefer			

We recommend:

Choice-based Conjoint Analysis (CBCA)

Feature	Chewbacca	BB-8	
Wookiee	Yes	No	$\langle 0 \rangle$
Droid	No	Yes	$1 = x^2$
Blaster	Yes	No	$\left \left\langle 0 \right\rangle \right $
I would buy toy			
Product Profile	x^1	x^2	

Preference Model and Geometric Interpretation

• Utilities for 2 products, d features, logit model

$$U_{1} = \beta \cdot x^{1} + \epsilon_{1} = \sum_{i=1}^{d} \beta_{i} x_{i}^{1} + \epsilon_{1}$$

$$U_{2} = \beta \cdot x^{2} + \epsilon_{2} = \sum_{i=1}^{d} \beta_{i} x_{i}^{2} + \epsilon_{2}$$
part-worths \uparrow \uparrow noise (gumbel)

Utility maximizing customer

р

 Geometric interpretation of preference for product 1 without error

$$x^1 \succeq x^2 \Leftrightarrow U_1 \ge U_2$$

Next Question = Minimize (Expected) Volume

Good Estimation? for β ? \mathbb{C} e Rebet identifier blip synice β try

 β_1

With Error = Volume of Ellipsoid $f(x^1, x^2)$

Rules of Thumb Still Good For Ellipsoid Volume

$$(\beta - \mu)' \cdot \Sigma^{-1} \cdot (\beta - \mu) \le r$$

• Choice balance:

- Minimize distance to center

$$\mu \cdot (x^1 - x^2)$$

• Postchoice symmetry:

- Maximize variance of question

$$\left(x^1 - x^2\right)' \cdot \sum \cdot \left(x^1 - x^2\right)$$

"Simple" Formula for Expected Volume

• Expected Volume = Non-convex function f(d, v) of distance: $d := \mu \cdot (x^1 - x^2)$ variance: $v := (x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$

Can evaluate f(d, v)with 1-dim integral \bigcirc

Optimization Model

min
$$f(d, v)$$
 X

s.t.

$$\mu \cdot (x^{1} - x^{2}) = d \qquad \checkmark$$
$$(x^{1} - x^{2})' \cdot \sum \cdot (x^{1} - x^{2}) = v \qquad \swarrow$$
$$A^{1}x^{1} + A^{2}x^{2} \leq b \qquad \checkmark$$
Formulation trick:
$$x^{1} \neq x^{2} \qquad \checkmark$$
$$x^{1}, x^{2} \in \{0, 1\}^{n}$$

Experimental Design with MIP

Technique 2: Piecewise Linear Functions

• D-efficiency = Non-convex function f(d, v)f distance: $d := \mu \cdot (x^1 - x^2)$ variance: $v := (x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$ Can evaluate f(d, v)with 1-dim integral \bigcirc

> Piecewise Linear Interpolation

MIP formulation

Computational Performance

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!

Summary and Main Messages

- Always choose Chewbacca!
- How to YOU use MIP / Optimization / OR / Analytics?
 - Study for the 2nd midterm!
 - Use JuMP and Julia Opt.
 - How about grad school down the river?
 - Masters of Business Analytics / OR
 - Ph.D. in Operations Research

OPERATIONS

RESEARCH

CENTER

https://orc.mit.edu

How Hard is MIP?

How hard is MIP: Traveling Salesman Problem ?

MIP = Avoid Enumeration

- Number of tours for 49 cities = $48!/2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour: > 10^{35} years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
 - Less than a second!
 - 4 iterations of **cutting plane** method!
 - Dantzig, Fulkerson and Johnson 1954 did it by hand!
 - For more info see tutorial in ConcordeTSP app
 - Cutting planes are the key for effectively solving (even NPhard) MIP problems in practice.

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
 - CPLEX v1.2 (1991) v11 (2007): 29,000x speedup
 - Gurobiv1 (2009) v6.5 (2015): 48.7x speedup
 - Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
 GLPK, COIN-OR (CBC) and SCIP (only for non-commercial)
- Easy to use, fast and versatile modeling languages
 - Julia based JuMP modelling language
 - <u>http://julialang.org</u>
 - http://www.juliaopt.org

Technique 1: Binary Quadratic $x^1, x^2 \in \{0, 1\}^n$

$$\begin{pmatrix} x^{1} - x^{2} \end{pmatrix}' \cdot \sum \cdot \begin{pmatrix} x^{1} - x^{2} \end{pmatrix} = v$$

$$X_{i,j}^{l} = x_{i}^{l} \cdot x_{j}^{l} \quad (l \in \{1,2\}, \quad i,j \in \{1,\ldots,n\}) :$$

$$X_{i,j}^{l} \leq x_{i}^{l}, \quad X_{i,j}^{l} \leq x_{j}^{l}, \quad X_{i,j}^{l} \geq x_{i}^{l} + x_{j}^{l} - 1, \quad X_{i,j}^{l} \geq 0$$

$$W_{i,j} = x_{i}^{1} \cdot x_{j}^{2} :$$

$$W_{i,j} = x_{i}^{1} \cdot x_{j}^{2} :$$

 $W_{i,j} \le x_i^1, \quad W_{i,j} \le x_j^2, \quad W_{i,j} \ge x_i^1 + x_j^2 - 1, \quad W_{i,j} \ge 0$

$$\sum_{i,j=1}^{n} \left(X_{i,j}^{1} + X_{i,j}^{2} - W_{i,j} - W_{j,i} \right) \sum_{i,j=1}^{n} v$$

Technique 1: Binary Quadratic $x^1, x^2 \in \{0, 1\}^n$

$$\begin{split} x^{1} \neq x^{2} & \Leftrightarrow \quad \|x^{1} - x^{2}\|_{2}^{2} \geq 1 \\ X_{i,j}^{l} = x_{i}^{l} \cdot x_{j}^{l} \quad (l \in \{1, 2\}, \quad i, j \in \{1, \dots, n\}): \\ X_{i,j}^{l} \leq x_{i}^{l}, \quad X_{i,j}^{l} \leq x_{j}^{l}, \quad X_{i,j}^{l} \geq x_{i}^{l} + x_{j}^{l} - 1, \quad X_{i,j}^{l} \geq 0 \\ W_{i,j} = x_{i}^{1} \cdot x_{j}^{2}: \end{split}$$

 $W_{i,j} \le x_i^1, \quad W_{i,j} \le x_j^2, \quad W_{i,j} \ge x_i^1 + x_j^2 - 1, \quad W_{i,j} \ge 0$

$$\sum_{i,j=1}^{n} \left(X_{i,j}^1 + X_{i,j}^2 - W_{i,j} - W_{j,i} \right) \ge 1$$

Simple Formulation for Univariate Functions

$$z = f(x)$$

$$egin{aligned} x \ z \end{pmatrix} &= \sum_{j=1}^5 \begin{pmatrix} d_j \ f(d_j) \end{pmatrix} \lambda_j \ 1 &= \sum_{j=1}^5 \lambda_j, \quad \lambda_j \geq 0 \ y \in \{0,1\}^4, \quad \sum_{i=1}^4 y_i = 1 \ 0 \leq \lambda_1 \leq y_1 \ 0 \leq \lambda_2 \leq y_1 + y_2 \ 0 \leq \lambda_3 \leq y_2 + y_3 \ 0 \leq \lambda_4 \leq y_3 + y_4 \ 0 \leq \lambda_5 \leq y_4 \end{aligned}$$

Advanced Formulation for Univariate Functions

$$z = f(x)$$

$$egin{aligned} & x \ z \end{pmatrix} &= \sum_{j=1}^5 \begin{pmatrix} d_j \ f(d_j) \end{pmatrix} \lambda_j \ & 1 &= \sum_{j=1}^5 \lambda_j, \quad \lambda_j \geq 0 \ & y \in \{0,1\}^2 \ & 0 \leq \lambda_1 + \lambda_5 \leq 1 - y_1 \ & 0 \leq \lambda_3 \quad \leq y_1 \ & 0 \leq \lambda_4 + \lambda_5 \leq 1 - y_2 \ & 0 \leq \lambda_1 + \lambda_2 \leq y_2 \end{aligned}$$