Mixed Integer Programming (MIP) for Daily Fantasy Sports, Statistics and Marketing

Juan Pablo Vielma

Massachusetts Institute of Technology

AM/ES 121, SEAS, Harvard.
Boston, MA, November, 2016.

MIP \& Daily Fantasy Sports

Example Entry

LINEUP			Avg. Rem. I Player: \$0 Rem. Salary: \$0		
pos	PLAYER	OPP	FPPG	SALARY	
C	Jussi Jokinen	Fla@Anh	3.1	\$5,300	*
C	Brandon Sutter	Pit@Van	3.0	\$4,400	*
W	Nikolaj Ehlers	Wpg@Tor	3.9	\$4,800	*
w	Daniel Sedin ${ }^{\text {P }}$	Pit@Van	3.8	\$6,400	\%
W	Radim Vrbata :	Pit@Van	3.4	\$5,800	*
D	Brian Campbell ${ }_{\text {a }}$	Fla@Anh	2.6	\$4,100	*
D	Morgan Rielly ${ }^{\text {a }}$	Wpg@Tor	3.5	\$4,200	\%
G	Corey Crawford p e	StL@Chi	6.3	\$7,800	*
UTIL	Blake Wheeler [${ }^{\text {a }}$	Wpg@Tor	4.8	\$7,200	*

\$55K Sniper Payoff Structure

Building a Lineup

Integer Programming Formulation

- We will make a bunch of lineups consisting of 9 players each
- Use an integer programming approach to find these lineups

Decision variables

$$
x_{p l}= \begin{cases}1, & \text { if player } p \text { in lineup } l \\ 0, & \text { otherwise }\end{cases}
$$

Basic Feasibility

- 9 different players
- Salary less than \$50,000

Basic constraints

$$
\begin{aligned}
& \sum_{p=1}^{N} c_{p} x_{p l} \leq \$ 50,000, \quad \text { (budget constraint) } \\
& \sum_{p=1}^{N} x_{p l}=9, \quad \text { (lineup size constraint) } \\
& x_{p l} \in\{0,1\}, \quad 1 \leq p \leq N .
\end{aligned}
$$

Position Feasibility

- Between 2 and 3 centers
- Between 3 and 4 wingers
- Between 2 and 3 defensemen
- 1 goalie

Position constraints

$$
\begin{aligned}
& 2 \leq \sum_{p \in C} x_{p l} \leq 3, \quad \text { (center constraint) } \\
& 3 \leq \sum_{u \in W} x_{p l} \leq 4, \quad \text { (winger constraint) } \\
& 2 \leq \sum_{u \in D} x_{p l} \leq 3, \quad \text { (defensemen constraint) } \\
& \sum_{u \in G} x_{p l}=1 \quad \text { (goalie constraint) }
\end{aligned}
$$

Team Feasibility

- At least 3 different NHL teams

Team constraints

Maximize Points

- Forecasted points for player $\mathrm{p}: f_{p}$

Score type	Points
Goal	3
Assist	2
Shot on Goal	0.5
Blocked Shot	0.5
Short Handed Point Bonus (Goal/Assist)	1
Shootout Goal	0.2
Hat Trick Bonus	1.5
Win (goalie only)	3
Save (goalie only)	0.2
Goal allowed (goalie only)	-1
Shutout Bonus (goalie only)	2

Points Objective Function

Lineup

Need > 38 points for a chance to win

Increase variance to have a chance

Structural Correlations - Teams

Structural Correlations - Lines

- Goal $=3 \mathrm{pt}$, assist $=2 \mathrm{pt}$

Structural Correlations - Lines $=$ Stacking

- At least 1 complete line (3 players per line)
- At least 2 partial lines (at least 2 players per line)

1 complete line constraint

$$
\begin{aligned}
& 3 v_{i} \leq \sum_{p \in L_{i}} x_{p l}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} \\
& \sum_{i=1}^{N_{L}} v_{i} \geq 1 \\
& v_{i} \in\{0,1\}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& 2 w_{i} \leq \sum_{p \in L_{i}} x_{p l}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} \\
& \sum_{i=1}^{N_{L}} w_{i} \geq 2 \\
& w_{i} \in\{0,1\}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\}
\end{aligned}
$$

Structural Correlations - Goalie Against Opposing Players

Structural Correlations - Goalie Against Skaters

- No skater against goalie

No skater against goalie constraint

$$
6 x_{p l}+\sum_{q \in \text { Opponents } p} x_{q l} \leq 6, \quad \forall p \in G
$$

Good, but not great chance

Play many diverse Lineups

- Make sure lineup I has no more than γ players in common with lineups 1 to l-1

Diversity constraint

$$
\sum_{p=1}^{N} x_{p k}^{*} x_{p l} \leq \gamma, k=1, \ldots, l-1
$$

Were we able to do it?

(8) GameCenter		
STANDINGS ENTRIES	DETAILS GAMES	
NHL \$40K Sniper [\$40,000 Guaranteed]		
$Q(Q)$		
	$\begin{gathered} 61.30 \\ \text { PMR } \bigcirc_{0} \end{gathered}$	
	$\begin{gathered} 57.30 \\ \text { PMR } \bigcirc_{0} \end{gathered}$	
	$\begin{gathered} 57.30 \\ \text { PMR } \bigcirc_{0} \end{gathered}$	
40th zlisto ®̀ $\$ 40.00$	$\begin{gathered} 56.10 \\ \text { PMR } \bigcirc_{0} \end{gathered}$	
	$\begin{gathered} 55.70 \\ \text { PMR } \bigcirc_{0} \end{gathered}$	
$\\|_{\text {sist }}^{\text {8isisen }}$	54.10	

* © \% \%			
(c) Gam	enter		
Standings	ENTRIES	DETAILS	GAMES

November 15, 2015 November 16, 2015 November 17, 2015 November 23, 2015

200 lineups

Policy Change

200 lineups -> 100 lineups

Were we able to continue it?

\leftarrow GameCenter			
STANDINGS	ENTRIES	DETAILS	GAMES
NHL \$12K Sniper [\$12,000 Guaranteed]			
1st \qquad			
$\begin{array}{ll}\text { 6th } \\ \text { zlisto } & 58.80 \\ \text { en } 150.00 & \\ \end{array}$			
8th			$\begin{aligned} & .40 \\ & 0_{0} \end{aligned}$
13th \square $\begin{gathered} \text { \% } \\ 3 \\ 3 \pi \end{gathered}$			
16th $\begin{gathered} \text { tix } \\ \text { zang } \end{gathered}$ \square			$.30$
20th			

The Greater Boston

> \$15K

December 12, 2015

100 lineups

julia

How can you do it? JuMP

Download Code from Github:
https://github.com/dscotthunter/Fantasy-Hockey-IP-Code

http://arxiv.org/pdf/1604.01455v1.pdf

Performance Time < 30 Minutes

Solver

MIP and Statistics: Inference for the Chilean Earthquake

The 2010 Chilean Earthquake

$6^{\text {th }}$ Strongest in Recorded History (8.8)

Impact on Educational Achievement? PSU = SAT

Earthquake Intensity + Great Demographic Info

Region V

Metropolitan Region

Region VI

Region VII

Region VIII
<0.05
$[0.05,0.11)$

- [0.11, 0.16)
- $[0.16,0.21)$
- [0.21, 0.26)
- $[0.26,0.32)$
- >= 0.32
* Epicenter

Commune

Randomized experiment

- Treatment / control have similar characteristics (covariates).

Covariate Balance Important for Inference

	Dose	
Covariate	1	2
Gender		
\quad Male	462	462
\quad Female	538	538
School SES		
\quad Low	75	75
Mid-low	327	327
Medium	294	294
Mid-high	189	189
High	115	115
Mother's education		
\quad Primary	335	335
Secondary	426	426
Technical	114	114
College	114	114
Missing	11	11
$\quad \vdots$		

Observational Study: e.g. After Earthquake

- Treatment / control can have different characteristics.

Matching

Treated Units: $\mathcal{T}=\left\{t_{1}, \ldots, t_{T}\right\}$
Control Units: $\mathcal{C}=\left\{c_{1}, \ldots, c_{C}\right\}$
Observed Covariates: $\mathcal{P}=\left\{p_{1}, \ldots, p_{P}\right\}$
Covariate Values: $\mathbf{x}^{t}=\left(x_{p}^{t}\right)_{p \in \mathcal{P}}, \quad t \in \mathcal{T}$

$$
\mathbf{x}^{c}=\left(x_{p}^{c}\right)_{p \in \mathcal{P}}, \quad c \in \mathcal{C}
$$

Nearest Neighbor Matching

$$
\begin{aligned}
\underset{\boldsymbol{m}}{\operatorname{minimize}} & \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} \delta_{t, c} m_{t, c} \\
\text { subject to } & \sum_{c \in \mathcal{C}} m_{t, c}=1, t \in \mathcal{T} \\
& \sum_{t \in \mathcal{T}} m_{t, c} \leq 1, c \in \mathcal{C} \\
0 \leq m_{t, c} \leq 1 & \boldsymbol{m}_{\tau, c} \in\{0,1\}, t \in \mathcal{T}, c \in \mathcal{C}
\end{aligned}
$$

- e.g. $\delta_{t, c}=\left\|\mathbf{x}^{t}-\mathbf{x}^{c}\right\|_{2}$
- Easy to solve

Balance Before After Matching

SIMCE school (decile) SIMCE student (decile) GPA ranking (decile)

Attendance (decile)
Rural school
Catholic school
High SES school
Mid-High SES school
Mid SES school
Mid-Low SES school
Public School
Voucher School

Maximum Cardinality Matching

$$
\mathcal{K}(p)=\left\{\mathbf{x}_{p}^{c}\right\}_{c \in \mathcal{P}} \cup\left\{\mathbf{x}_{p}^{t}\right\}_{t \in \mathcal{T}}
$$

$\max \sum_{k \in \in \in c_{0}} \sum_{m e}$

$$
\mathcal{C}_{p, k}=\left\{c \in \mathcal{C}: \mathbf{x}_{p}^{c}=k\right\}
$$

s.t.

$$
\mathcal{T}_{p, k}=\left\{t \in \mathcal{T}: \mathbf{x}_{p}^{t}=k\right\}
$$

$$
\begin{array}{rlrl}
\sum_{t \in \mathcal{T}} m_{t, c} & \leq 1, & \forall c \in \mathcal{C} \\
\sum_{c \in \mathcal{C}} m_{t, c} & \leq 1, & \forall t \in \mathcal{T} \\
\sum_{t \in \mathcal{T}_{p, k}} \sum_{c \notin \mathcal{C}_{p, k}} m_{t, c} & =\sum_{t \notin \mathcal{T}_{p, k}} \sum_{c \in \mathcal{C}_{p, k}} m_{t, c} & \forall p \in \mathcal{P}, k \in \mathcal{K}(p) \\
m_{t, c} & \in\{0,1\} & & \forall t \in \mathcal{T}, \quad c \in \mathcal{C} .
\end{array}
$$

- Very hard to solve (and very hard to understand!)

Advanced Maximum Cardinality Matching

$$
\begin{array}{ll}
\max & \sum_{t \in \mathcal{T}} x_{t} \\
\text { s.t. } & \mathcal{K}(p)=\left\{\mathbf{x}_{p}^{c}\right\}_{c \in \mathcal{P}} \cup\left\{\mathbf{x}_{p}^{t}\right\}_{t \in \mathcal{T}} \\
\mathcal{C}_{p, k}=\left\{c \in \mathcal{C}: \mathbf{x}_{p}^{c}=k\right\} \\
& \mathcal{T}=\left\{+\in \mathcal{T} . \mathbf{x}^{t}-k\right\}
\end{array}
$$

$$
\begin{aligned}
\sum_{t \in \mathcal{T}} x_{t} & =\sum_{c \in \mathcal{C}} y_{c}, & & \\
\sum_{t \in \mathcal{T}_{p, k}} x_{t} & =\sum_{c \in \mathcal{C}_{p, k}} y_{c}, & & \forall p \in \mathcal{P}, \quad k \in \mathcal{K}(p) \\
x_{t} & \in\{0,1\} & & \forall t \in \mathcal{T} \\
y_{c} & \in\{0,1\} & & \forall c \in \mathcal{C}
\end{aligned}
$$

- Matching without matching variables
- Easy to solve: Small, but inherits matching properties

Balance Before After Cardinality Matching

SIMCE school (decile) SIMCE student (decile) GPA ranking (decile)

Attendance (decile)
Rural school
Catholic school
High SES school
Mid-High SES school
Mid SES school
Mid-Low SES school
Public School
Voucher School

Can Also do Multiple Doses

- Dose

1. No quake
2. Medium quake
3. Bad quake

	Dose		
Covariate	1	2	3
Gender			
\quad Male	462	462	462
Female	538	538	538
School SES			
\quad Low	75	75	75
Mid-low	327	327	327
Medium	294	294	294
\quad Mid-high	189	189	189
\quad High	115	115	115
Mother's education			
\quad Primary	335	335	335
Secondary	426	426	426
\quad Technical	114	114	114
College	114	114	114
Missing	11	11	11
$\quad \vdots$			

Relative (To no Quake) Attendance Impact

3Doses

Relative (To no Quake) PSU Score Impact

3Doses

Medium quake
Bad quake

MIP and Marketing: Chewbacca or BB-8?

Adaptive Preference Questionnaires

Choice-based Conjoint Analysis (CBCA)

Preference Model and Geometric Interpretation

- Utilities for 2 products, d features, logit model

$$
\begin{aligned}
& U_{1}=\beta \cdot x^{1}+\text { (61) }=\sum_{i=1}^{d} \beta_{i} x_{i}^{1}+\text { (ब1) } \\
& U_{2}=\beta \cdot x^{2}+\text { ®2 }_{2}=\sum_{i=1}^{d} \beta_{i} x_{i}^{2}+\text { (ब2) }
\end{aligned}
$$

$$
\text { part-worths } \text { product profile } \longrightarrow \text { noise (gumbel) }^{\sim} \uparrow
$$

- Utility maximizing customer
- Geometric interpretation of preference for product 1 without error

$$
x^{1} \succeq x^{2} \Leftrightarrow U_{1} \geq U_{2}
$$

Next Question = Minimize (Expected) Volume

With Error $=$ Volume of Ellipsoid $\quad f\left(x^{1}, x^{2}\right)$

Rules of Thumb Still Good For Ellipsoid Volume

$$
(\beta-\mu)^{\prime} \cdot \Sigma^{-1} \cdot(\beta-\mu) \leq r
$$

- Choice balance:
- Minimize distance to center

$$
\mu \cdot\left(x^{1}-x^{2}\right)
$$

- Postchoice symmetry:
- Maximize variance of question

$$
\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)
$$

"Simple" Formula for Expected Volume

- Expected Volume $=$ Non-convex function $f(d, v)$ of distance: $d:=\mu \cdot\left(x^{1}-x^{2}\right)$
variance: $\quad v:=\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)$

Can evaluate $f(d, v)$ with 1-dim integral :

Optimization Model

min

$$
f(d, v)
$$

x
s.t.

$$
\begin{aligned}
\mu \cdot\left(x^{1}-x^{2}\right) & =d \\
\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right) & =v \quad \boldsymbol{X} \\
A^{1} x^{1}+A^{2} x^{2} & \leq b
\end{aligned}
$$

Formulation trick:
linearize $x_{i}^{k} \cdot x_{j}^{l}$
$x^{1} \neq x^{2} \quad$ X

$$
x^{1}, x^{2} \in\{0,1\}^{n}
$$

Technique 2: Piecewise Linear Functions

- D-efficiency $=$ Non-convexfunction $f(d, \imath$ øf
distance: $d:=\mu \cdot\left(x^{1}-x^{2}\right)$
variance: $\quad v:=\left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)$

Can evaluate $f(d, v)$ with 1-dim integral :

Piecewise Linear Interpolation

MIP formulation

Computational Performance

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!

Simple Advanced

Summary and Main Messages

- Always choose Chewbacca!
- How to YOU use MIP / Optimization / OR / Analytics?
- Study for the $2^{\text {nd }}$ midterm!
- Use JuMP and Julia Opt.
- How about grad school down the river?
- Masters of Business Analytics / OR
- Ph.D. in Operations Research
https://orc.mit.edu
OPERATIONS RESEARCH
 CENTER

How Hard is MIP?

How hard is MIP: Traveling Salesman Problem?

MIP = Avoid Enumeration

- Number of tours for 49 cities $=48!/ 2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17}$ flops
- Assuming one floating point operation per tour:
$>10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
- Less than a second!
- 4 iterations of cutting plane method!
- Dantzig, Fulkerson and Johnson 1954 did it by hand!
- For more info see tutorial in ConcordeTSP app
- Cutting planes are the key for effectively solving (even NPhard) MIP problems in practice.

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
- CPLEX v1.2 (1991) - v11 (2007): 29,000x speedup
- Gurobi v1 (2009) - v6.5 (2015): 48.7x speedup
- Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
- GLPK, COIN-OR (CBC) and SCIP (only for non-commercial)
- Easy to use, fast and versatile modeling languages
- Julia based JuMP modelling language
- http://julialang.org
- http://www.juliaopt.org

Technique 1: Binary Quadratic $x^{1}, x^{2} \in\{0,1\}^{n}$

$$
\begin{aligned}
& \left(x^{1}-x^{2}\right)^{\prime} \cdot \sum \cdot\left(x^{1}-x^{2}\right)=v \\
& X_{i, j}^{l}=x_{i}^{l} \cdot x_{j}^{l} \quad(l \in\{1,2\}, \quad i, j \in\{1, \ldots, n\}): \\
& X_{i, j}^{l} \leq x_{i}^{l}, \quad X_{i, j}^{l} \leq x_{j}^{l}, \quad X_{i, j}^{l} \geq x_{i}^{l}+x_{j}^{l}-1, \quad X_{i, j}^{l} \geq 0 \\
& W_{i, j}=x_{i}^{1} \cdot x_{j}^{2}: \\
& W_{i, j} \leq x_{i}^{1}, \quad W_{i, j} \leq x_{j}^{2}, \quad W_{i, j} \geq x_{i}^{1}+x_{j}^{2}-1, \quad W_{i, j} \geq 0 \\
& \quad \sum_{i, j=1}^{n}\left(X_{i, j}^{1}+X_{i, j}^{2}-W_{i, j}-W_{j, i}\right) \sum_{i, j}=v
\end{aligned}
$$

Technique 1: Binary Quadratic $x^{1}, x^{2} \in\{0,1\}^{n}$

$$
\begin{aligned}
& x^{1} \neq x^{2} \quad \Leftrightarrow \quad\left\|x^{1}-x^{2}\right\|_{2}^{2} \geq 1 \\
& X_{i, j}^{l}=x_{i}^{l} \cdot x_{j}^{l} \quad(l \in\{1,2\}, \quad i, j \in\{1, \ldots, n\}): \\
& X_{i, j}^{l} \leq x_{i}^{l}, \quad X_{i, j}^{l} \leq x_{j}^{l}, \quad X_{i, j}^{l} \geq x_{i}^{l}+x_{j}^{l}-1, \quad X_{i, j}^{l} \geq 0 \\
& W_{i, j}=x_{i}^{1} \cdot x_{j}^{2}: \\
& W_{i, j} \leq x_{i}^{1}, \quad W_{i, j} \leq x_{j}^{2}, \quad W_{i, j} \geq x_{i}^{1}+x_{j}^{2}-1, \quad W_{i, j} \geq 0 \\
& \quad \sum_{i, j=1}^{n}\left(X_{i, j}^{1}+X_{i, j}^{2}-W_{i, j}-W_{j, i}\right) \geq 1
\end{aligned}
$$

Simple Formulation for Univariate Functions

$$
z=f(x)
$$

$$
\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j}
$$

$1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0$
$y \in\{0,1\}^{4}, \quad \sum_{i=1}^{4} y_{i}=1$
$0 \leq \lambda_{1} \leq y_{1}$
$0 \leq \lambda_{2} \leq y_{1}+y_{2}$
$0 \leq \lambda_{3} \leq y_{2}+y_{3}$
$0 \leq \lambda_{4} \leq y_{3}+y_{4}$
Size $=O$ (\# of segments)
Non-Ideal: Fractional Extreme Points
$0 \leq \lambda_{5} \leq y_{4}$

Advanced Formulation for Univariate Functions

$$
\begin{aligned}
& z=f(x) \quad\binom{x}{z}=\sum_{j=1}^{5}\binom{d_{j}}{f\left(d_{j}\right)} \lambda_{j} \\
& 1=\sum_{j=1}^{5} \lambda_{j}, \quad \lambda_{j} \geq 0 \\
& f\left(d_{3}\right) \uparrow \\
& f\left(d_{2}\right) \\
& f\left(d_{5}\right) \\
& f\left(d_{1}\right) \\
& f\left(d_{4}\right) y
\end{aligned}
$$

