Mixed Integer Programming (MIP) for Daily Fantasy Sports, Statistics and Marketing

Juan Pablo Vielma

Massachusetts Institute of Technology

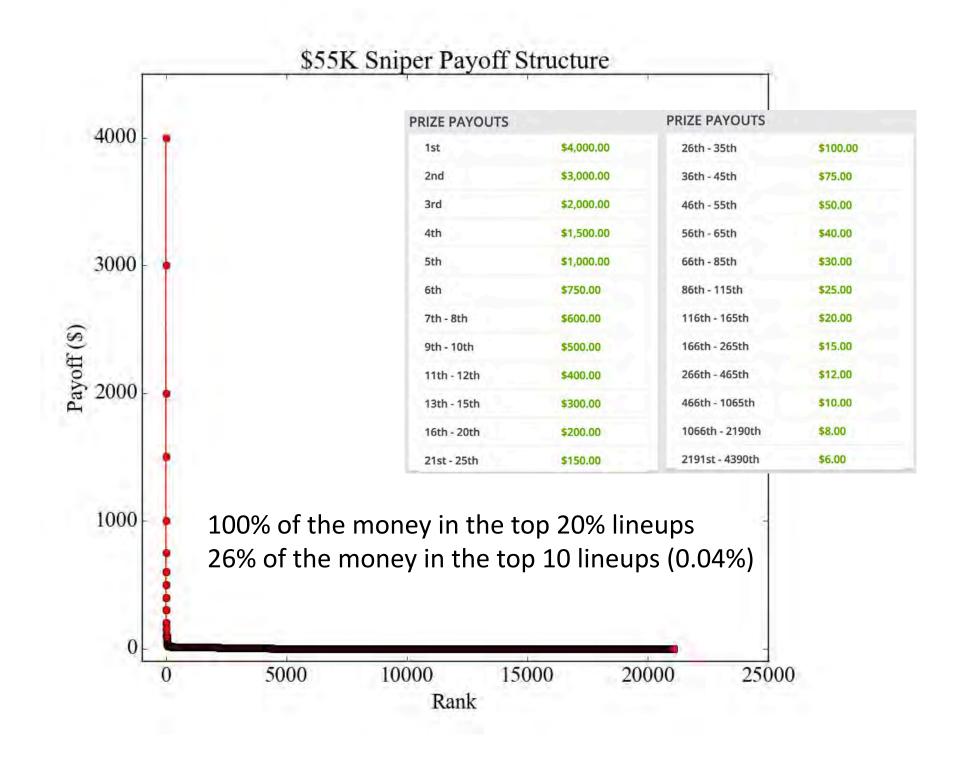
15.093, MIT.

Boston, MA, December, 2016.

MIP & Daily Fantasy Sports

Example Entry

POS	PLAYER	OPP	FPPG	SALARY	
С	Jussi Jokinen	Fla@Anh	3.1	\$5,300	*
С	Brandon Sutter	Pit@Van	3.0	\$4,400	×
W	Nikolaj Ehlers	Wpg@Tor	3.9	\$4,800	*
W	Daniel Sedin 🗎	Pit@Van	3.8	\$6,400	×
W	Radim Vrbata 🖹	Pit@Van	3.4	\$5,800	×
D	Brian Campbell	Fla@Anh	2.6	\$4,100	*
D	Morgan Rielly 🖺	Wpg@Tor	3.5	\$4,200	*
G	Corey Crawford P	StL@Chi	6.3	\$7,800	*
UTIL	Blake Wheeler 🗎	Wpg@Tor	4.8	\$7,200	×



Building a Lineup

Integer Programming Formulation

- We will make a bunch of lineups consisting of 9 players each
- Use an integer programming approach to find these lineups

Decision variables

$$x_{pl} = \begin{cases} 1, & \text{if player } p \text{ in lineup } l \\ 0, & \text{otherwise} \end{cases}$$

Basic Feasibility

- 9 different players
- Salary less than \$50,000

Basic constraints

$$\sum_{p=1}^{N} c_p x_{pl} \le \$50,000, \quad \text{(budget constraint)}$$

$$\sum_{p=1}^{N} x_{pl} = 9, \quad \text{(lineup size constraint)}$$

$$x_{pl} \in \{0,1\}, \quad 1 \le p \le N.$$

Position Feasibility

- Between 2 and 3 centers
- Between 3 and 4 wingers
- Between 2 and 3 defensemen
- 1 goalie

Position constraints

$$2 \leq \sum_{p \in C} x_{pl} \leq 3, \quad \text{(center constraint)}$$

$$3 \leq \sum_{u \in W} x_{pl} \leq 4, \quad \text{(winger constraint)}$$

$$2 \leq \sum_{u \in D} x_{pl} \leq 3, \quad \text{(defensemen constraint)}$$

$$\sum_{u \in G} x_{pl} = 1 \quad \text{(goalie constraint)}$$

Team Feasibility

At least 3 different NHL teams

Team constraints

$$t_{i} \leq \sum_{p \in T_{i}} x_{pl}, \quad \forall i \in \{1, \dots, N_{T}\}$$

$$\sum_{i=1}^{N_{T}} t_{i} \geq 3,$$

$$t_{i} \in \{0, 1\}, \quad \forall i \in \{1, \dots, N_{T}\}.$$

Maximize Points

• Forecasted points for player p: f_{p}

Score type	Points
Goal	3
Assist	2
Shot on Goal	0.5
Blocked Shot	0.5
Short Handed Point Bonus (Goal/Assist)	1
Shootout Goal	0.2
Hat Trick Bonus	1.5
Win (goalie only)	3
Save (goalie only)	0.2
Goal allowed (goalie only)	-1
Shutout Bonus (goalie only)	2

Table 1 Points system for NHL contests in DraftKings.

Points Objective Function

$$\sum_{p=1}^{N} f_p x_{pl}$$

Lineup

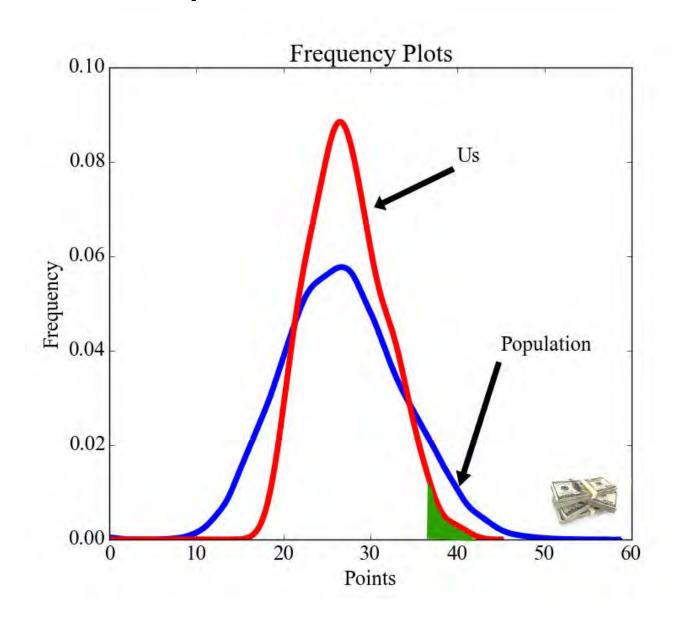
Projections: 5.4 2.5 3.4 3.0 3.2 4.2 3.5 3.4 5.7

\$9500 \$2700 \$4600 \$3800 \$4600 \$6400 \$5200 \$5100 \$8000

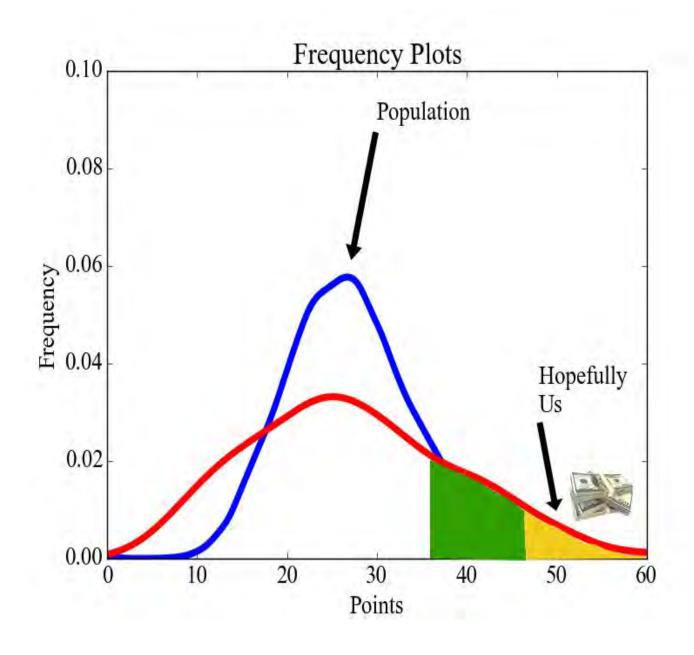
W UTIL D D C C W W G

23 points on average

Need > 38 points for a chance to win



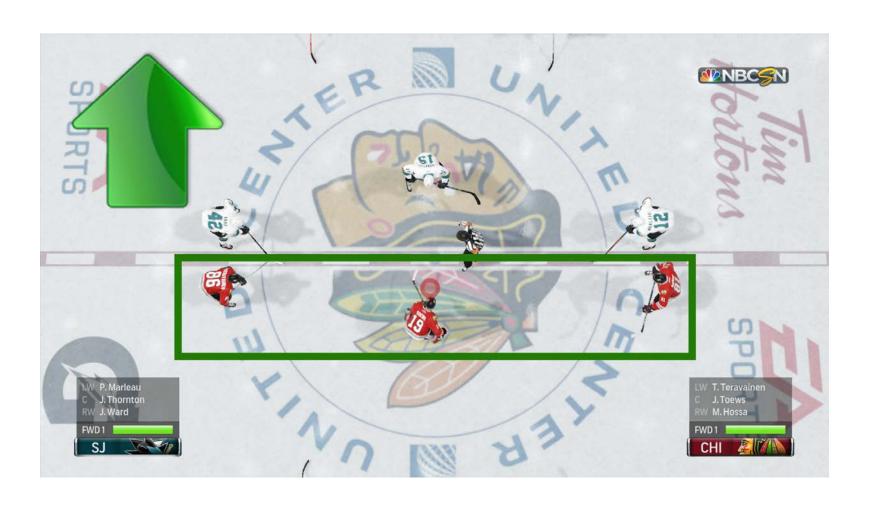
Increase variance to have a chance



Structural Correlations - Teams

Structural Correlations - Lines

• Goal = 3 pt, assist = 2 pt



Structural Correlations – Lines = Stacking

- At least 1 complete line (3 players per line)
- At least 2 partial lines (at least 2 players per line)

1 complete line constraint

$$3v_i \leq \sum_{p \in L_i} x_{pl}, \quad \forall i \in \{1, \dots, N_L\}$$

$$\sum_{i=1}^{N_L} v_i \geq 1$$

$$v_i \in \{0, 1\}, \quad \forall i \in \{1, \dots, N_L\}.$$

2 partial lines constraint

$$2w_i \le \sum_{p \in L_i} x_{pl}, \quad \forall i \in \{1, \dots, N_L\}$$

$$\sum_{i=1}^{N_L} w_i \ge 2$$

$$w_i \in \{0, 1\}, \quad \forall i \in \{1, \dots, N_L\}.$$

Structural Correlations – Goalie Against Opposing Players

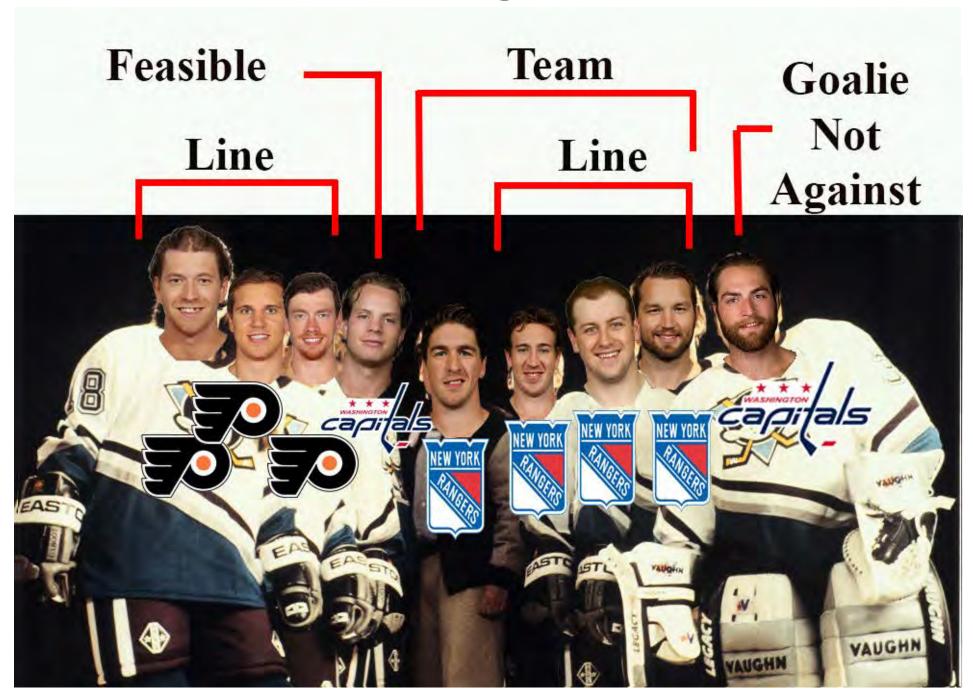
Structural Correlations – Goalie Against Skaters

No skater against goalie

No skater against goalie constraint

$$6x_{pl} + \sum_{q \in Opponents_p} x_{ql} \le 6, \quad \forall p \in G$$

Good, but not great chance



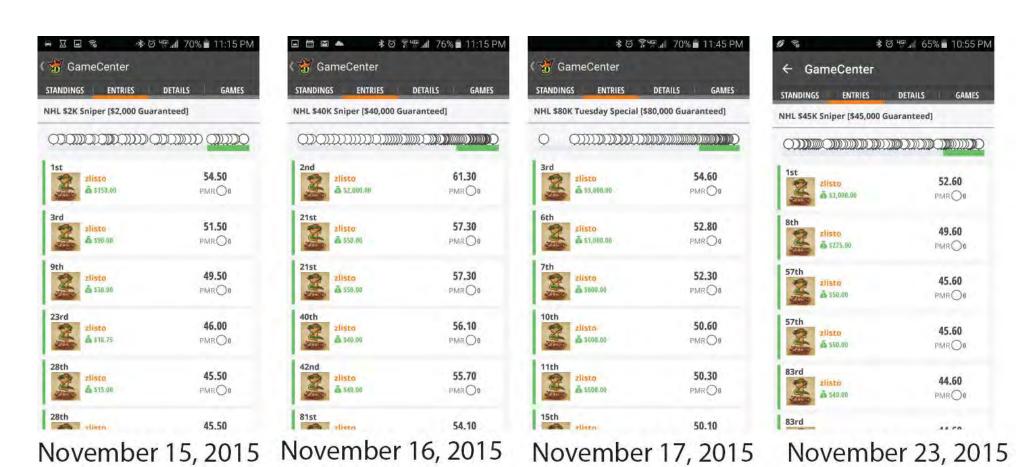
Play many diverse Lineups

• Make sure lineup I has no more than γ players in common with lineups 1 to I-1

Diversity constraint

$$\sum_{p=1}^{N} x_{pk}^* x_{pl} \le \gamma, k = 1, \dots, l-1$$

Were we able to do it?

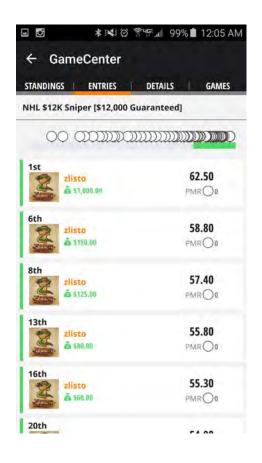


200 lineups

Policy Change

200 lineups -> 100 lineups

Were we able to continue it?



December 12, 2015

> \$15K

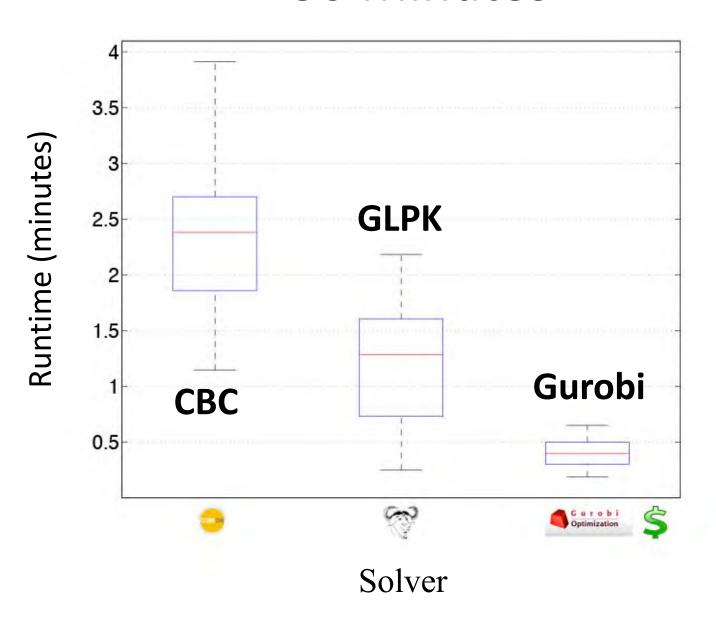
100 lineups

julia How can you do it? JuMP

Download Code from Github:

https://github.com/dscotthunter/Fantasy-Hockey-IP-Code

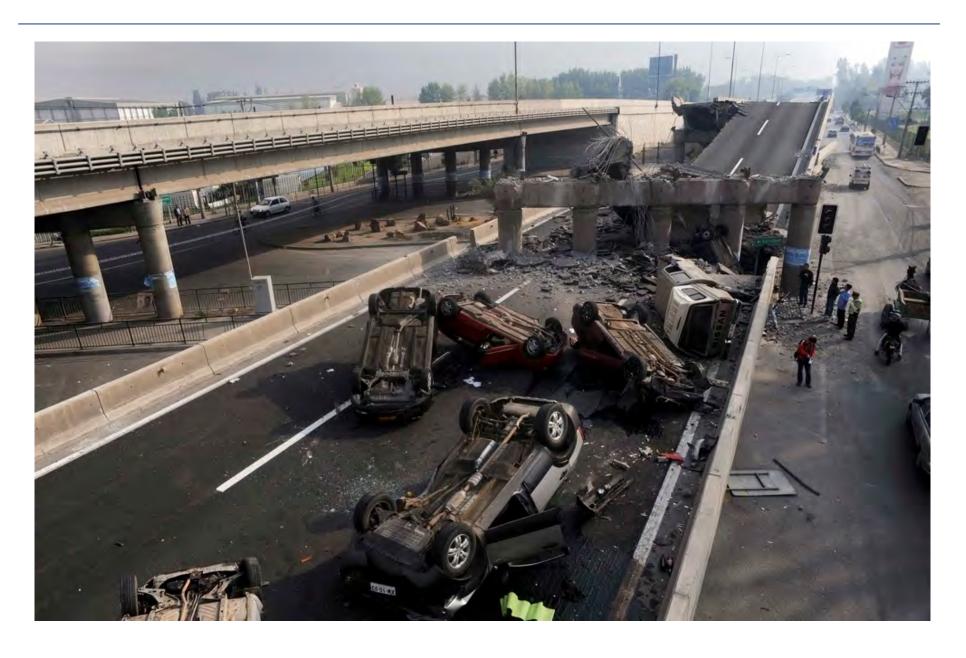
Performance Time < 30 Minutes



MIP and Statistics: Inference for the Chilean Earthquake

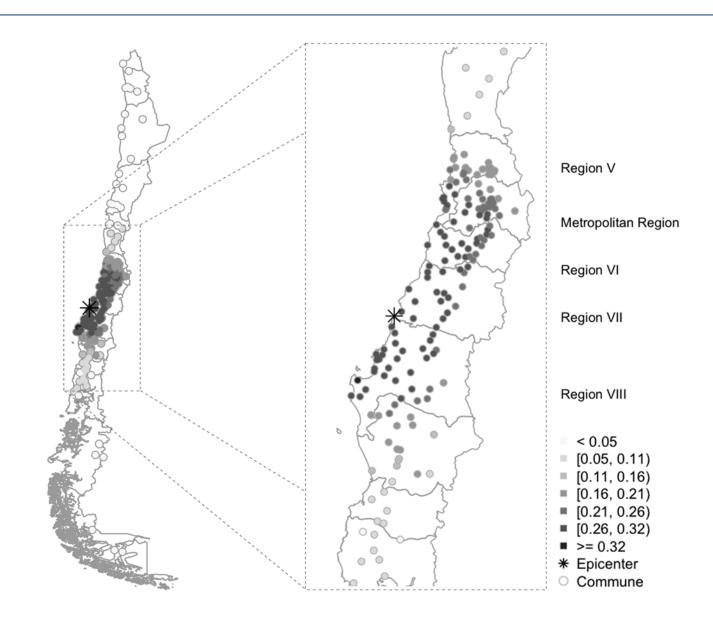
The 2010 Chilean Earthquake

6th Strongest in Recorded History (8.8)



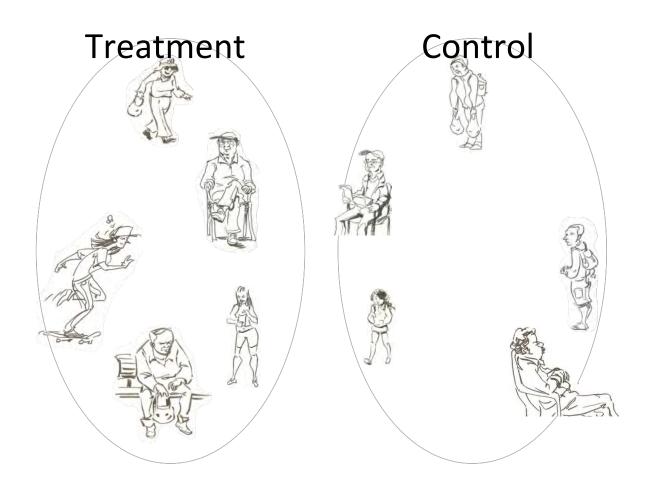
Impact on Educational Achievement? PSU = SAT

Earthquake Intensity + Great Demographic Info



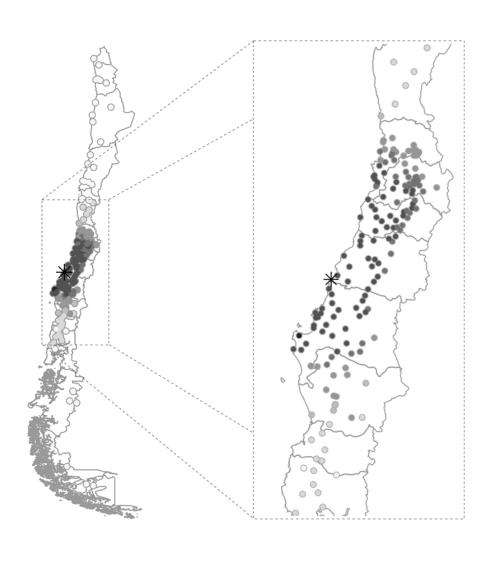
Randomized experiment

 Treatment / control have similar characteristics (covariates).



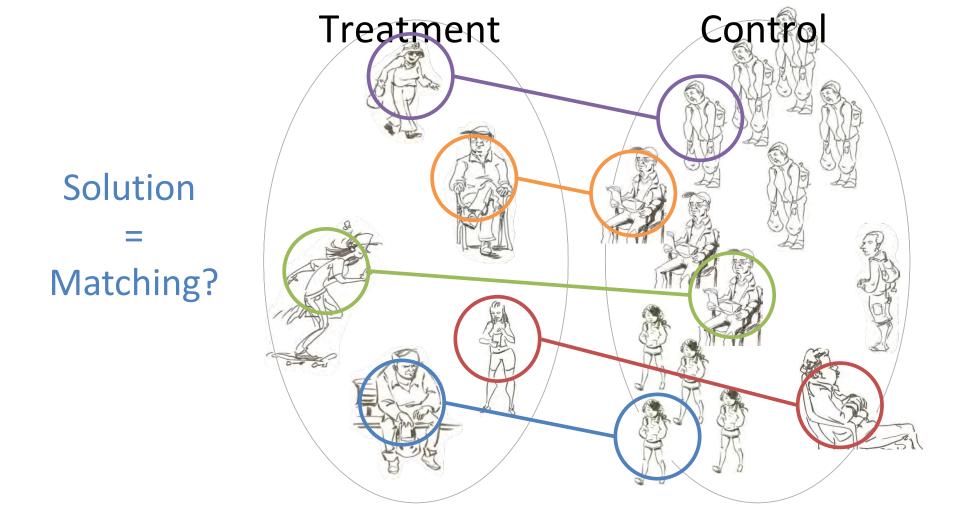
Covariate Balance Important for Inference

	Do	Dose		
Covariate	1	2		
Gender				
Male	462	462		
Female	538	538		
School SES				
Low	75	75		
Mid-low	327	327		
Medium	294	294		
Mid-high	189	189		
High	115	115		
Mother's education				
Primary	335	335		
Secondary	426	426		
Technical	114	114		
College	114	114		
Missing	11	11		
: :				



Observational Study: e.g. After Earthquake

Treatment / control can have different characteristics.



Matching

Treated Units: $\mathcal{T} = \{t_1, \dots, t_T\}$

Control Units: $C = \{c_1, \ldots, c_C\}$

Observed Covariates: $\mathcal{P} = \{p_1, \dots, p_P\}$

Covariate Values: $\mathbf{x}^t = (x_p^t)_{p \in \mathcal{P}}, \quad t \in \mathcal{T}$ $\mathbf{x}^c = (x_p^c)_{p \in \mathcal{P}}, \quad c \in \mathcal{C}$

Nearest Neighbor Matching

$$\begin{aligned} & \underset{\boldsymbol{m}}{\mathsf{minimize}} & & \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} \delta_{t,c} m_{t,c} \\ & \text{subject to} & & \sum_{c \in \mathcal{C}} m_{t,c} = 1 \ , \ t \in \mathcal{T} \\ & & & \sum_{c \in \mathcal{C}} m_{t,c} \leq 1, \ c \in \mathcal{C} \\ & & & \\ & 0 \leq m_{t,c} \leq 1 \ - m_{\overline{t,c}} \in \{0,1\}, \ t \in \mathcal{T}, c \in \mathcal{C} \end{aligned}$$

- e.g. $\delta_{t,c} = \|\mathbf{x}^t \mathbf{x}^c\|_2$
- Easy to solve

Balance Before After Matching

SIMCE school (decile)

SIMCE student (decile)

GPA ranking (decile)

Attendance (decile)

Rural school

Catholic school

High SES school

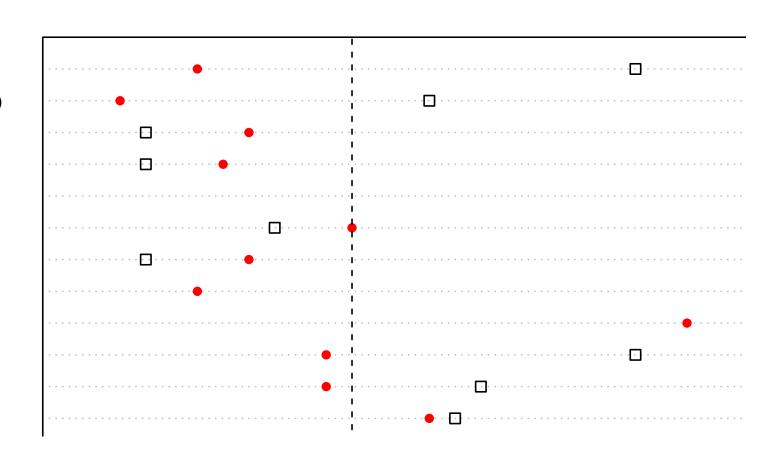
Mid-High SES school

Mid SES school

Mid-Low SES school

Public School

Voucher School



Maximum Cardinality Matching

$$\mathcal{K}(p) = \{\mathbf{x}_{p}^{c}\}_{c \in \mathcal{P}} \cup \{\mathbf{x}_{p}^{t}\}_{t \in \mathcal{T}}$$

$$\max \sum_{t \in \mathcal{T}} \sum_{c \in \mathcal{C}} m_{t,c}$$

$$\mathcal{C}_{p,k} = \{c \in \mathcal{C} : \mathbf{x}_{p}^{c} = k\}$$

$$\mathcal{T}_{p,k} = \{t \in \mathcal{T} : \mathbf{x}_{p}^{t} = k\}$$

$$\sum_{t \in \mathcal{T}} m_{t,c} \leq 1, \qquad \forall c \in \mathcal{C}$$

$$\sum_{t \in \mathcal{T}_{p,k}} \sum_{c \notin \mathcal{C}_{p,k}} m_{t,c} \leq 1, \qquad \forall t \in \mathcal{T}$$

$$\sum_{t \in \mathcal{T}_{p,k}} \sum_{c \notin \mathcal{C}_{p,k}} m_{t,c} = \sum_{t \notin \mathcal{T}_{p,k}} \sum_{c \in \mathcal{C}_{p,k}} m_{t,c} \quad \forall p \in \mathcal{P}, k \in \mathcal{K}(p)$$

$$m_{t,c} \in \{0,1\} \qquad \forall t \in \mathcal{T}, \quad c \in \mathcal{C}.$$

Very hard to solve (and very hard to understand!)

Advanced Maximum Cardinality Matching

$$\max \sum_{t \in \mathcal{T}} x_t \qquad \qquad \mathcal{K}(p) = \{\mathbf{x}_p^c\}_{c \in \mathcal{P}} \cup \{\mathbf{x}_p^t\}_{t \in \mathcal{T}}$$

$$\mathcal{C}_{p,k} = \{c \in \mathcal{C} : \mathbf{x}_p^c = k\}$$

$$s.t. \qquad \qquad \mathcal{T}_{p,k} = \{t \in \mathcal{T} : \mathbf{x}_p^t = k\}$$

$$\sum_{t \in \mathcal{T}_{p,k}} x_t = \sum_{c \in \mathcal{C}_{p,k}} y_c, \quad \forall p \in \mathcal{P}, \quad k \in \mathcal{K}(p)$$

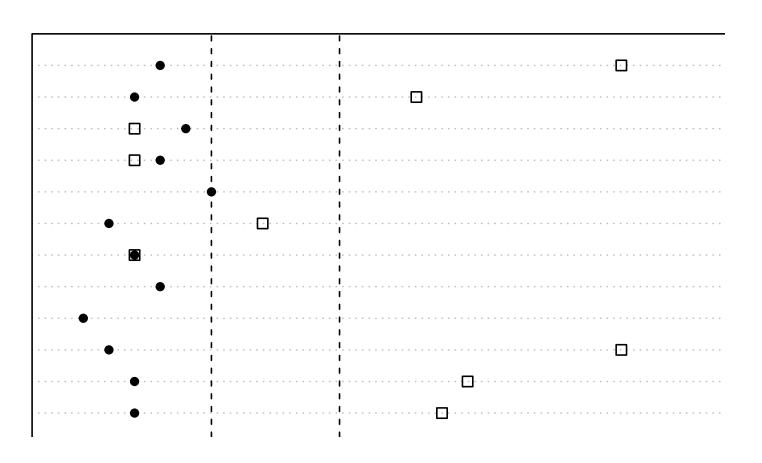
$$x_t \in \{0,1\} \qquad \forall t \in \mathcal{T}$$

$$y_c \in \{0,1\} \qquad \forall c \in \mathcal{C}.$$

- Matching without matching variables
- Easy to solve: Small, but inherits matching properties

Balance Before After Cardinality Matching

SIMCE school (decile)
SIMCE student (decile)
GPA ranking (decile)
Attendance (decile)
Rural school
Catholic school
High SES school
Mid-High SES school
Mid-Low SES school
Public School
Voucher School

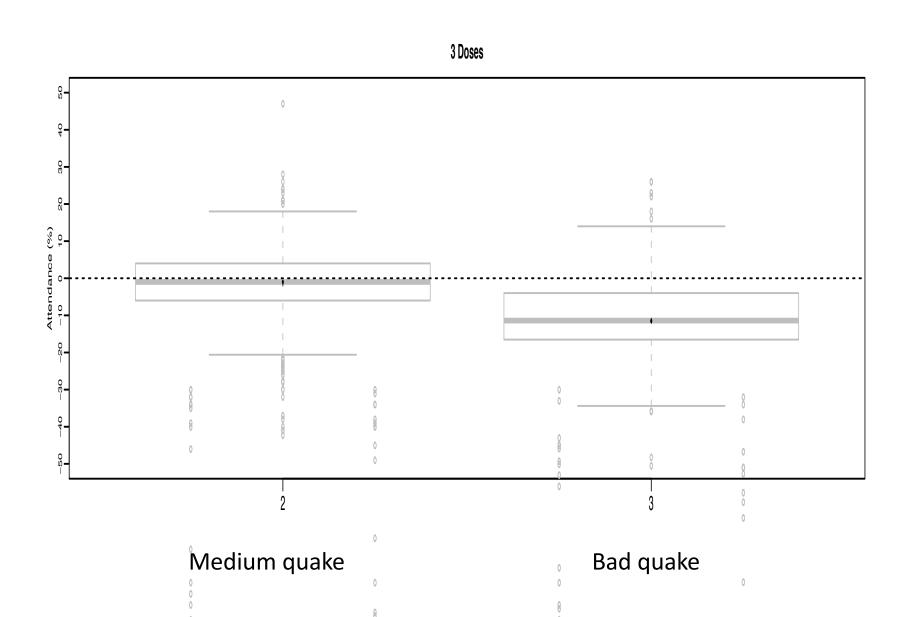


Can Also do Multiple Doses

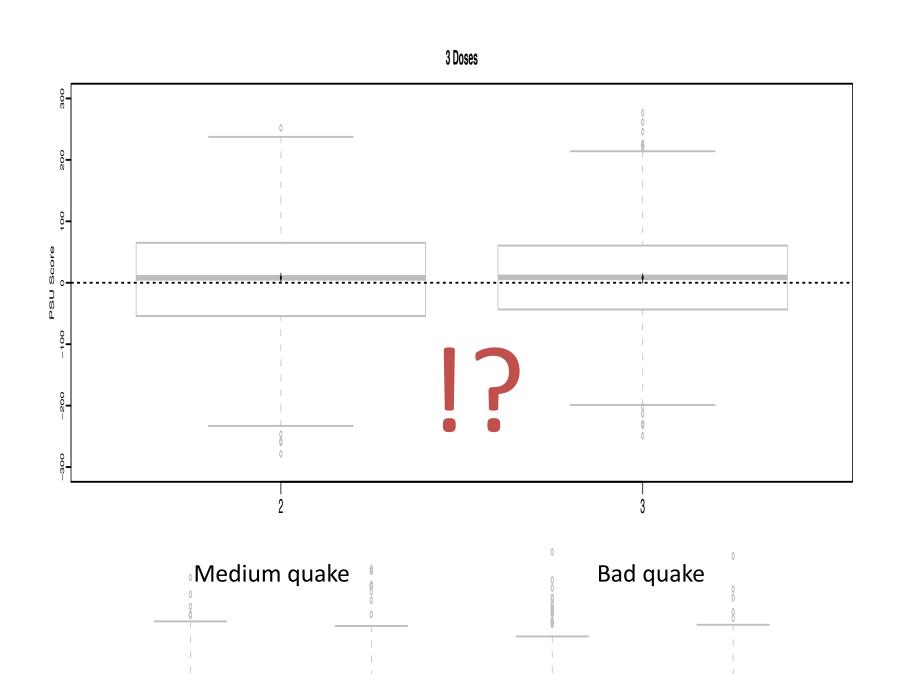
- Dose
 - 1. No quake
 - 2. Medium quake
 - 3. Bad quake

	Dose		
Covariate	1	2	3
Gender			
Male	462	462	462
Female	538	538	538
School SES			
Low	75	75	75
Mid-low	327	327	327
Medium	294	294	294
Mid-high	189	189	189
High	115	115	115
Mother's education			
Primary	335	335	335
Secondary	426	426	426
Technical	114	114	114
College	114	114	114
Missing	11	11	11
:			

Relative (To no Quake) Attendance Impact

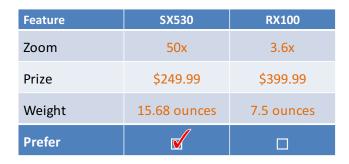


Relative (To no Quake) PSU Score Impact



MIP and Marketing: Chewbacca or BB-8?

Adaptive Preference Questionnaires



Feature	TG-4	G9
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Weight	7.36 lb	7.5 lb
Prefer		

Feature	TG-4	Galaxy 2
Waterproof	Yes	No
Prize	\$249.99	\$399.99
Viewfinder	Electronic	Optical
Prefer		

We recommend:

Choice-based Conjoint Analysis (CBCA)

Feature	Chewbacca	BB-8
Wookiee	Yes	No
Droid	No	Yes
Blaster	Yes	No
I would buy toy		
Product Profile	x^1	x^2

$$\begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{pmatrix} = x^2$$

Preference Model and Geometric Interpretation

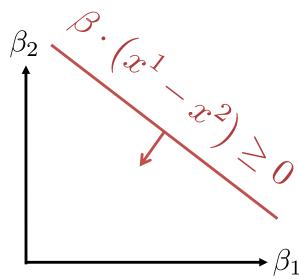
Utilities for 2 products, d features, logit model

$$U_1 = \beta \cdot x^1 + \underbrace{\epsilon_1} = \sum_{i=1}^d \beta_i x_i^1 + \underbrace{\epsilon_1}$$

$$U_2 = \beta \cdot x^2 + \underbrace{\epsilon_2} = \sum_{i=1}^d \beta_i x_i^2 + \underbrace{\epsilon_2}$$
 part-worths product profile noise (gumbel)

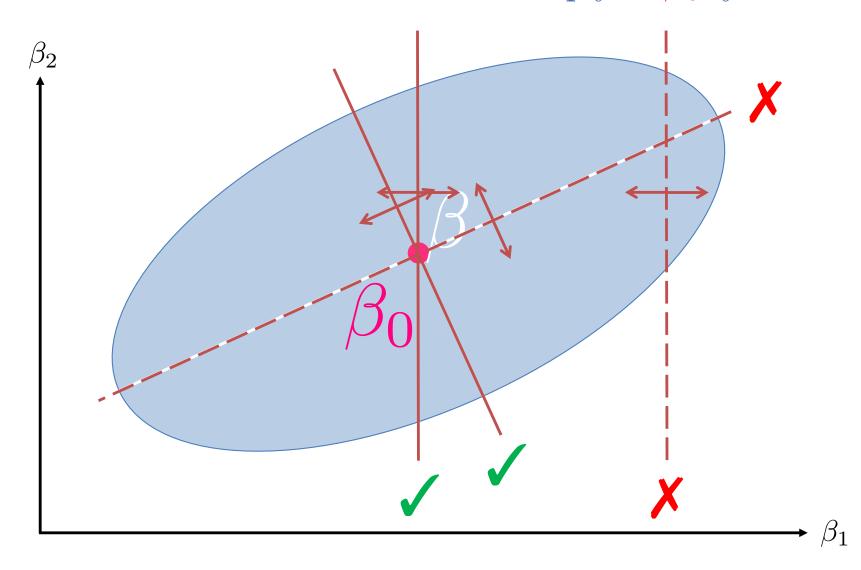
- Utility maximizing customer
 - Geometric interpretation of preference for product 1 without error

$$x^1 \succeq x^2 \Leftrightarrow U_1 \geq U_2$$



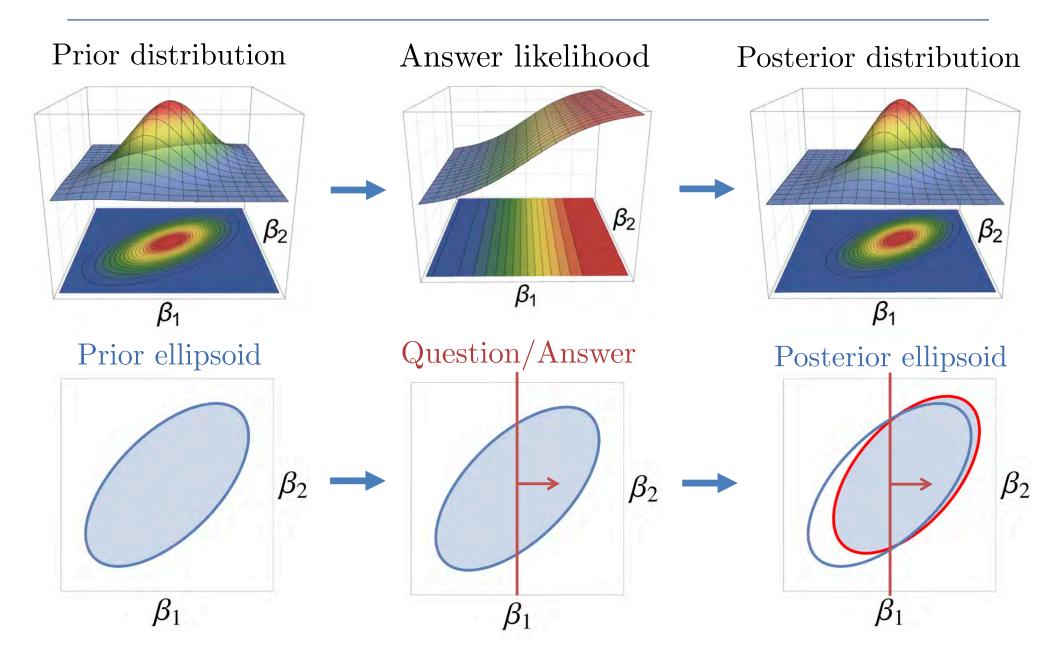
Next Question = Minimize (Expected) Volume

Good estimation? for β ? Le Principle de la particle de la parti



With Error = Volume of Ellipsoid $f(x^1, x^2)$

$$f\left(x^1, x^2\right)$$



Rules of Thumb Still Good For Ellipsoid Volume

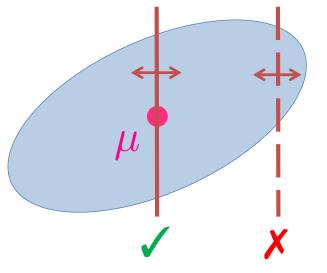
$$(\beta - \mu)' \cdot \Sigma^{-1} \cdot (\beta - \mu) \le r$$

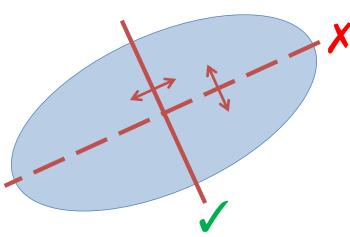
- Choice balance:
 - Minimize distance to center

$$\mu \cdot (x^1 - x^2)$$

Maximize variance of question

$$(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$$



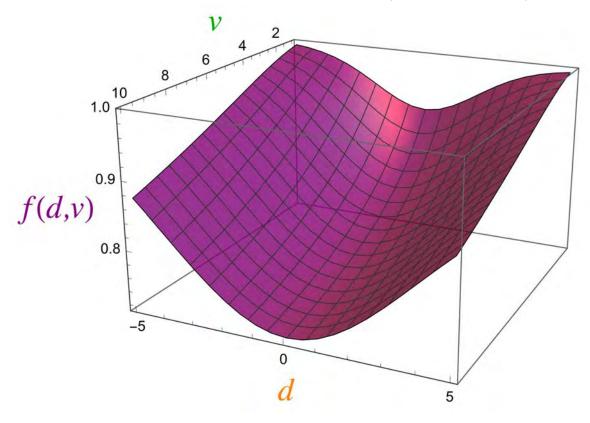


"Simple" Formula for Expected Volume

• Expected Volume = Non-convex function $f(\mathbf{d}, v)$ of

distance:
$$d := \mu \cdot (x^1 - x^2)$$

variance:
$$v := (x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2)$$



Can evaluate f(d, v) with 1-dim integral \odot

Optimization Model

min

$$f(\mathbf{d}, v)$$

s.t.

$$\mu \cdot (x^1 - x^2) = d$$

$$(x^1 - x^2)' \cdot \sum \cdot (x^1 - x^2) = v$$

$$A^1x^1 + A^2x^2 \le b$$

Formulation trick:

linearize
$$x_i^k \cdot x_j^l$$

$$x^1 \neq x^2$$

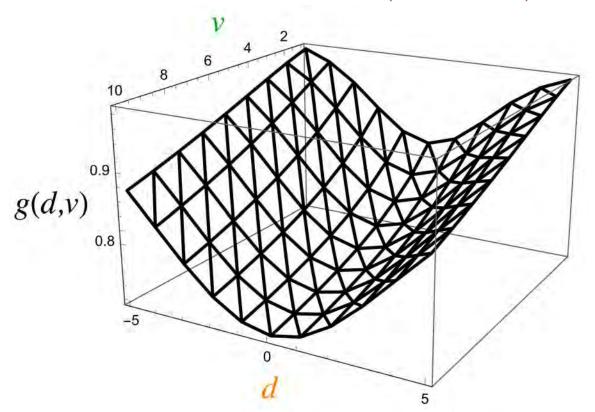
$$x^1, x^2 \in \{0, 1\}^n$$

Technique 2: Piecewise Linear Functions

• D-efficiency = Non-convex function $f(\mathbf{d}, \mathbf{v})$

distance:
$$d := \mu \cdot (x^1 - x^2)$$

variance:
$$v := (x^1 - x^2)' \cdot \sum (x^1 - x^2)$$



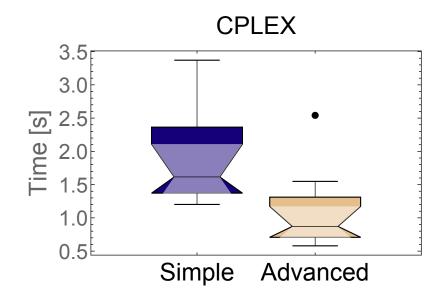
Can evaluate f(d, v) with 1-dim integral \odot

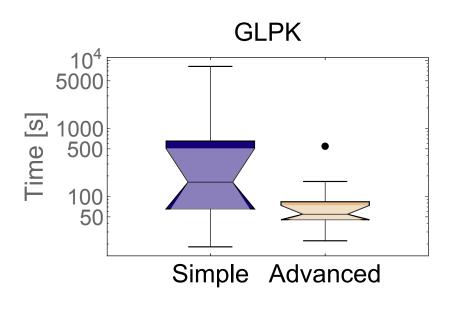
Piecewise Linear Interpolation

MIP formulation

Computational Performance

- Advanced formulations provide an computational advantage
- Advantage is significantly more important for free solvers
- State of the art commercial solvers can be significantly better that free solvers
- Still, free is free!





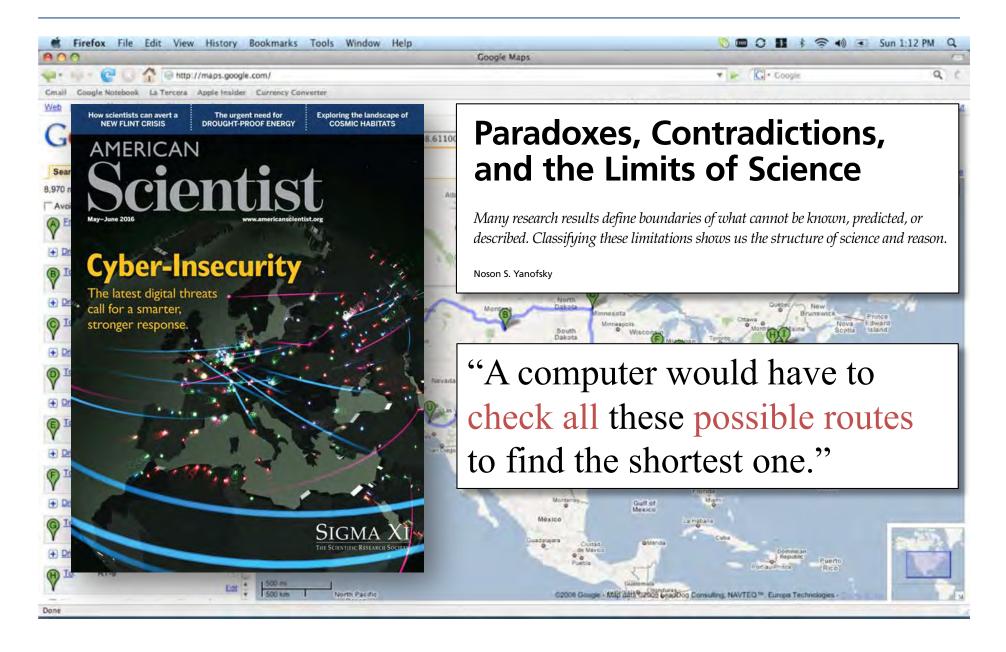
Summary and Main Messages

Always choose Chewbacca!

- How to YOU use MIP?
 - Study for the final!
 - Use JuMP and Julia Opt.
 - Write "good" formulations.
 - Use your domain expertise.

How Hard is MIP?

How hard is MIP: Traveling Salesman Problem?



MIP = Avoid Enumeration

- Number of tours for 49 cities = $48!/2 \approx 10^{60}$
- Fastest supercomputer $\approx 10^{17} \mathrm{flops}$
- Assuming one floating point operation per tour:
 - $> 10^{35}$ years $\approx 10^{25}$ times the age of the universe!
- How long does it take on an iphone?
 - Less than a second!
 - 4 iterations of cutting plane method!
 - Dantzig, Fulkerson and Johnson 1954 did it by hand!
 - For more info see tutorial in ConcordeTSP app
 - Cutting planes are the key for effectively solving (even NP-hard) MIP problems in practice.

50+ Years of MIP = Significant Solver Speedups

- Algorithmic Improvements (Machine Independent):
 - CPLEX v1.2 (1991) v11 (2007): 29,000x speedup
 - Gurobi v1 (2009) v6.5 (2015): 48.7x speedup
 - Commercial, but free for academic use
- (Reasonably) effective free / open source solvers:
 - GLPK, COIN-OR (CBC) and SCIP (only for non-commercial)
- Easy to use, fast and versatile modeling languages
 - Julia based JuMP modelling language
 - http://julialang.org
 - http://www.juliaopt.org

Technique 1: Binary Quadratic $x^1, x^2 \in \{0, 1\}^n$

$$(x^{1} - x^{2})' \cdot \sum \cdot (x^{1} - x^{2}) = v$$

$$X_{i,j}^{l} = x_{i}^{l} \cdot x_{j}^{l} \quad (l \in \{1,2\}, \quad i, j \in \{1,\dots,n\}) :$$

$$X_{i,j}^{l} \leq x_{i}^{l}, \quad X_{i,j}^{l} \leq x_{j}^{l}, \quad X_{i,j}^{l} \geq x_{i}^{l} + x_{j}^{l} - 1, \quad X_{i,j}^{l} \geq 0$$

$$W_{i,j} = x_{i}^{1} \cdot x_{j}^{2} :$$

$$W_{i,j} \leq x_{i}^{1}, \quad W_{i,j} \leq x_{j}^{2}, \quad W_{i,j} \geq x_{i}^{1} + x_{j}^{2} - 1, \quad W_{i,j} \geq 0$$

$$\sum_{i,j}^{n} (X_{i,j}^{1} + X_{i,j}^{2} - W_{i,j} - W_{j,i}) \sum_{i,j} = v$$

i,j=1

Technique 1: Binary Quadratic $x^1, x^2 \in \{0, 1\}^n$

$$x^{1} \neq x^{2} \iff \|x^{1} - x^{2}\|_{2}^{2} \geq 1$$
 $X_{i,j}^{l} = x_{i}^{l} \cdot x_{j}^{l} \quad (l \in \{1,2\}, \quad i,j \in \{1,\ldots,n\}):$
 $X_{i,j}^{l} \leq x_{i}^{l}, \quad X_{i,j}^{l} \leq x_{j}^{l}, \quad X_{i,j}^{l} \geq x_{i}^{l} + x_{j}^{l} - 1, \quad X_{i,j}^{l} \geq 0$
 $W_{i,j} = x_{i}^{1} \cdot x_{j}^{2}:$
 $W_{i,j} \leq x_{i}^{1}, \quad W_{i,j} \leq x_{j}^{2}, \quad W_{i,j} \geq x_{i}^{1} + x_{j}^{2} - 1, \quad W_{i,j} \geq 0$

$$\sum_{i=1}^{n} (X_{i,j}^{1} + X_{i,j}^{2} - W_{i,j} - W_{j,i}) \geq 1$$

i,j=1

Simple Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0,1\}^4, \quad \sum_{i=1}^4 y_i = 1$$

$$0 \le \lambda_1 \le y_1$$

$$0 \le \lambda_2 \le y_1 + y_2$$

$$0 \le \lambda_3 \le y_2 + y_3$$

$$0 \le \lambda_4 \le y_3 + y_4$$
Non-Ideal: Fractional Extreme Points
$$0 \le \lambda_5 \le y_4$$

Advanced Formulation for Univariate Functions

$$z = f(x)$$

$$\begin{pmatrix} x \\ z \end{pmatrix} = \sum_{j=1}^{5} \begin{pmatrix} d_j \\ f(d_j) \end{pmatrix} \lambda_j$$

$$1 = \sum_{j=1}^{5} \lambda_j, \quad \lambda_j \ge 0$$

$$y \in \{0, 1\}^2$$

$$0 \le \lambda_1 + \lambda_5 \le 1 - y_1$$

$$0 \le \lambda_3 \qquad \le y_1$$

$$0 \le \lambda_4 + \lambda_5 \le 1 - y_2$$
Size = $O(\log_2 \# \text{ of segments})$

$$0 \le \lambda_1 + \lambda_2 \le y_2$$
Ideal: Integral Extreme Points