Winning at Daily Fantasy Hockey Using Analytics

David Hunter,

Juan Pablo Vielma (@J_P_Vielma), and
Tauhid Zaman (@zlisto)

Example Entry

LINEUP			Avg. Rem. / Player. \$0 Rem. Salary: \$0		
pos	PLAYER	OPP	FPFG	SALARY	
C	Jussi Jokinen	Fla@Anh	3.1	\$5,300	\%
C	Brandon Sutter	Pit@Van	3.0	\$4,400	*
W	Nikolaj Ehlers	Wpg@Tor	3.9	\$4,800	*
W	Daniel Sedin ${ }^{\text {P }}$	Pit@Van	3.8	\$6,400	*
W	Radim Vrbata ${ }_{\text {a }}$	Pit@Van	3.4	\$5,800	*
D	Brian Campbell ${ }^{\text {P }}$	Fla@Anh	2.6	\$4,100	*
D	Morgan Rielly ${ }_{\text {a }}$	Wpg@Tor	3.5	\$4,200	\%
G	Corey Crawford P P	StL@Chi	6.3	\$7,800	*
UTIL	Blake Wheeler Pa	Wpg@Tor	4.8	\$7,200	*

\$55K Sniper Payoff Structure

4000	-		PRIZE PAYOUTS		PRIZE PAYOUTS	
			1 1st	\$4,000.00	26th - 35th	\$100.00
			2nd	\$3,000.00	36th - 45 th	\$75.00
			3rd	\$2,000.00	46th - 55th	\$50.00
			4th	\$1,500.00	56th - 65th	\$40.00
3000	¢		5th	\$1,000.00	66th - 85th	\$30.00
			6th	\$750.00	86th-115th	\$25.00
			7th - 8th	\$600.00	116th - 165th	\$20.00
			9th - 10th	\$500.00	166th - 265th	\$15.00
			11th - 12th	\$400.00	266th - 465th	\$12.00
			13th - 15 th	\$300.00	466th - 1065th	\$10.00
			16th - 20th	\$200.00	1066th-2190th	\$8.00
			21st-25th	\$150.00	21915t-4390th	56.00
1000	100\% of the money in the top 20\% lineups					
	- 26% of the money in the top 10 lineups (0.04\%)					
	0	5000	10000	15000		

Previous Knowledge: Analytics

Previous Knowledge: Analytics

Building a Lineup

Using this knowledge...

Were we able to do it?

(5 (0) GameCenter		
STANDINGS ENTRIES	DETAILS	GAMES
NHL \$2K Sniper [\$2,000 Guaranteed]		
1st zlisto玉 $\$ 150.00$		$\begin{gathered} \mathbf{5 4 . 5 0} \\ \text { PMR } \bigcirc 0 \end{gathered}$
3rd zlisto â $\$ 90000$		$\begin{gathered} 51.50 \\ \text { PMR } \bigcirc 0 \end{gathered}$
9th zlisto ลิ 330.00		$\begin{gathered} 49.50 \\ \text { PMR } \bigcirc 0 \end{gathered}$
23rd zlisto Eิ 518.75		$\begin{gathered} 46.00 \\ \text { PMR } \bigcirc 0 \end{gathered}$
		$\begin{gathered} 45.50 \\ \text { PMR } \bigcirc 0 \end{gathered}$
28th 45.50		

(Ed) GameCenter	
STANDINGS ENTRIES	DETAILS GAMES
NHL \$40K Sniper [\$40,000 Guaranteed]	
$Q(2)$	
	$\begin{aligned} & 61.30 \\ & \text { PMR } \bigcirc_{0} \end{aligned}$
	$\begin{aligned} & 57.30 \\ & \text { PMR } \bigcirc_{0} \end{aligned}$
${ }_{2}^{\text {21st }} \text { zlisto }$	$\begin{gathered} 57.30 \\ \text { PMR } \bigcirc_{0} \end{gathered}$
40th zlisto à 500.00	$\begin{gathered} 56.10 \\ \text { PMR } \bigcirc 0 \end{gathered}$
	$\begin{gathered} 55.70 \\ \text { PMR } \bigcirc 0 \end{gathered}$
$\begin{array}{\|l\|l\|} 81 \text { st } \\ \text { ylicto } & 54.10 \end{array}$	

< 8 GameCenter			
STANDINGS	ENTRIES	DETAILS	GAMES
NHL \$80K Tuesday Special [$\$ 80,000$ Guaranteed]			
10th 50.60 ®̄ 5600.00			
11th zlisto 50.30 む̀ 3500.00 PMROo			
15th50.10			

\leftarrow GameCenter			
STANDINGS	ENTRIES	DETAILS	GAMES
NHL \$45K Sniper [\$45,000 Guaranteed]			
8th$\begin{array}{lc} \text { zlisto } & 49.60 \\ \tilde{\AA} 5275.00 & \text { PMRO0 } \end{array}$			
57th 45.60 ©̆ 550.00 PMrO			
83rd			
83 rd			

November 15, 2015 November 16, 2015 November 17, 2015 November 23, 2015

200 lineups

Policy Change

Policy Change

Were we able to continue it?

December 12, 2015
100 lineups

Legal Disclaimer: All profits are in the process of being
donated to charity.

Integer Programming Formulation

- We will make a bunch of lineups consisting of 9 players each
- Use an integer programming approach to find these lineups

Decision variables

$$
x_{p l}= \begin{cases}1, & \text { if player } p \text { in lineup } l \\ 0, & \text { otherwise }\end{cases}
$$

First Attempt...

3)		Q	3	23)	8		\%
	9		\%	2		9	
		9	9	8	8		
(2)	(2)					(3)	9
8	8					8	28
		(2)	\%		\%		
	9		?	9		8	
8		9	\%	8	8)		2)

Basic Feasibility

- 9 different players
- Salary less than $\$ 50,000$

Basic constraints

$$
\begin{aligned}
& \sum_{p=1}^{N} c_{p} x_{p l} \leq \$ 50,000, \quad(\text { budget constraint) } \\
& \sum_{p=1}^{N} x_{p l}=9, \quad(\text { lineup size constraint }) \\
& x_{p l} \in\{0,1\}, \quad 1 \leq p \leq N .
\end{aligned}
$$

Position Feasibility

- Between 2 and 3 centers
- Between 3 and 4 wingers
- Between 2 and 3 defensemen
- 1 goalie

Position constraints

$$
\begin{aligned}
& 2 \leq \sum_{p \in C} x_{p l} \leq 3, \quad \text { (center constraint) } \\
& 3 \leq \sum_{p \in W} x_{p l} \leq 4, \quad(\text { winger constraint) } \\
& 2 \leq \sum_{p \in D} x_{p l} \leq 3, \quad \text { (defensemen constraint) } \\
& \sum_{u \in G} x_{p l}=1 \quad \text { (goalie constraint) }
\end{aligned}
$$

Team Feasibility

- At least 3 different NHL teams

Team constraints

First Attempt...

\$6400 \$7200 \$4200 \$4100 \$5300 \$4400 \$4800 \$5800 \$7800
W UTIL D D C C W W G

> 3 Different Teams

First Attempt...

Second Attempt...

- Must increase our mean points...
- Solution:

USE EXPERT PREDICTIONS

Prediction Errors

Maximize Points

- Forecasted points for player $\mathrm{p}: f_{p}$
- You get to choose what the forecasts are

Points Objective Function

Second Attempt...

Maximize points

Old Lineup

$\$ 6400 \$ 7200 \$ 4200 \$ 4100 \$ 5300 \$ 4400 \$ 4800 \$ 5800 \quad \$ 7800$
W UTIL D D C C W W G

New Lineup

Second Attempt...

How can we do better?

- Thref n'r af rinanan.

So what do we do?

By doing this...

Stacking Lineups

- Stacking means putting players on a single lineup that have a positive correlation
- Either the players pop off together -> tons of points
- Or the players crap out -> few points
- We stack using "structural correlations"

Structural Correlations - Teams

Structural Correlations - Lines

Structural Correlations - Lines

Structural Correlations - Lines

- At least 1 complete line (3 players per line)
- At least 2 partial lines (at least 2 players per line)

1 complete line constraint

$$
\begin{aligned}
& 3 v_{i} \leq \sum_{p \in L_{i}} x_{p l}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} \\
& \sum_{i=1}^{N_{L}} v_{i} \geq 1 \\
& v_{i} \in\{0,1\}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} .
\end{aligned}
$$

2 partial lines constraint

$$
\begin{aligned}
& 2 w_{i} \leq \sum_{p \in L_{i}} x_{p l}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} \\
& \sum_{i=1}^{N_{L}} w_{i} \geq 2 \\
& w_{i} \in\{0,1\}, \quad \forall i \in\left\{1, \ldots, N_{L}\right\} .
\end{aligned}
$$

Structural Correlations - Goalie Against Opposing Players

Structural Correlations - Goalie Against Opposing Players

Structural Correlations - Goalie Against Skaters

- No skater against goalie

No skater against goalie constraint

$$
6 x_{p l}+\sum_{q \in O \text { Oponents } p_{p}} x_{q l} \leq 6, \quad \forall p \in G
$$

Second Attempt...

Lineup Diversity

- Make sure lineup I has no more than γ players in common with lineups 1 to l-1

Diversity constraint

$$
\sum_{p=1}^{N} x_{p k}^{*} x_{p l} \leq \gamma, k=1, \ldots, l-1
$$

To Review...

PERFORMANCE ON REAL CONTESTS

Performance on Real Contests

- Each point is a contest, with profit margin shown
- Used all stacking, a maximum overlap of 7, and 200 lineups

Impact of Stacking

- Used a maximum overlap of 7, and 200 lineups

Impact of Number of Lineups

Impact of Lineup Birth Order

- We create lineups sequentially
- Are the best lineups the "oldest" lineups?

First lineup isn't usually the best lineup

Impact of Diversity

More games -> Use more diversity

How can you do it?

$$
\begin{aligned}
& 2(y-3)+4(y+12)=-2(y+10)+4(y+6)+3(2 y+8) \\
& 2 y+-6+-4 y+-48=-2 y+-20+4 y+-24+6 y+24 \\
& 3(2 x+5 y)+-2(4 x+6 y)=4(9 x+5 y)+-3(2 x+4 y)+2 \\
& 6 x+15 y+-8 x+-12 y=36 x+20 y+-6 x+-12 y+-8 x+ \\
& 3(a+b)-\frac{a}{-}+5(a+3 b)=-3(a+4 b)+2(-6 a+4 b) \\
& \left(-\frac{2+2)}{(2)}+2\right)=5(6 m-7 n)+3(5 m+6 n \\
& 4 y-6 z)=4(4 x-6 y-7 z)-2(2 x+7 x+3 y
\end{aligned}
$$

Lineup Construction Procedure

- Get projection data
- Make sure you wait until the starting goalies are announced
- Solve integer program for each lineup one at a time
- But add in the new diversity constraints for each new lineup

< 30 Minutes

jullià

 How can you do it? JuMP

 How can you do it? JuMP} Download Code from Github:

https://github.com/dscotthunter/Fantasy-Hockey-IP-Code


```
mare, comemytamimin
```



```
*)
```

```
Ster mima:
```



```
    *)
```



```
    Natmen
```


Performance Time

Solver

In the paper...

- Consider several strategies
- Different Integer Programming formulations
- Varying prediction models
- Number of lineups
- http://arxiv.org/pdf/1604.01455v1.pdf

